Linearly repetitive Delone sets are rectifiable

被引:19
|
作者
Aliste-Prieto, Jose [1 ]
Coronel, Daniel [2 ]
Gambaudo, Jean-Marc [3 ]
机构
[1] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[3] Univ Nice Sophia Antipolis, UMR CNRS 7335, Inst Non Lineaire Nice Sophia Antipolis, F-06560 Valbonne, France
关键词
SEPARATED NETS;
D O I
10.1016/j.anihpc.2012.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every linearly repetitive Delone set in the Euclidean d-space R-d, with d >= 2, is equivalent, up to a bi-Lipschitz homeomorphism, to the integer lattice Z(d). In the particular case when the Delone set X in R-d comes from a primitive substitution tiling of R-d, we give a condition on the eigenvalues of the substitution matrix which ensures the existence of a homeomorphism with bounded displacement from X to the lattice beta Z(d) for some positive beta. This condition includes primitive Pisot substitution tilings but also concerns a much broader set of substitution tilings. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:275 / 290
页数:16
相关论文
共 50 条