Generalized Boundary Conditions for the Time-Fractional Advection Diffusion Equation

被引:19
|
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
fractional calculus; non-Fickian diffusion; fractional advection diffusion equation; complex systems; nonperfect contact conditions; HEAT-CONDUCTION; ANOMALOUS DIFFUSION; ENTROPY; DISPERSION; TSALLIS;
D O I
10.3390/e17064028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive contact for the time-fractional advection diffusion equation. When the reduced characteristics of the interfacial region are equal to zero, the conditions of perfect contact are obtained as a particular case.
引用
收藏
页码:4028 / 4039
页数:12
相关论文
共 50 条
  • [21] The solution of the time-fractional diffusion equation by the generalized differential transform method
    Cetinkaya, Aysegul
    Kiymaz, Onur
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2349 - 2354
  • [22] THE REVISED GENERALIZED TIKHONOV METHOD FOR THE BACKWARD TIME-FRACTIONAL DIFFUSION EQUATION
    Deiveegan, Arumugam
    Nieto, Juan J.
    Prakash, Periasamy
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (01): : 45 - 56
  • [23] Fundamental Solutions to Time-Fractional Advection Diffusion Equation in a Case of Two Space Variables
    Povstenko, Y. Z.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [24] THE DIRICHLET PROBLEM FOR THE TIME-FRACTIONAL ADVECTION-DIFFUSION EQUATION IN A HALF-SPACE
    Povstenko, Yuriy
    Klekot, Joanna
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2015, 14 (02) : 73 - 83
  • [25] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [26] NONLOCAL INITIAL BOUNDARY VALUE PROBLEM FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Sadybekov, Makhmud
    Oralsyn, Gulaiym
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [27] Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions
    Derbissaly, Bauyrzhan
    Sadybekov, Makhmud
    AIMS MATHEMATICS, 2024, 9 (04): : 9969 - 9988
  • [28] Inverse source problem for two-term time-fractional diffusion equation with nonlocal boundary conditions
    Derbissaly, Bauyrzhan
    Kirane, Mokhtar
    Sadybekov, Makhmud
    CHAOS SOLITONS & FRACTALS, 2024, 183
  • [29] Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation
    Mahmoud, Elsayed, I
    Aleroev, Temirkhan S.
    MATHEMATICS, 2022, 10 (17)
  • [30] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820