Lagrange multiplier based transport theory for quantum wires

被引:23
|
作者
Kosov, DS [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, D-60439 Frankfurt, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 120卷 / 15期
关键词
D O I
10.1063/1.1687316
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We discuss how the Lagrange multiplier method of nonequilibrium steady state statistical mechanics can be applied to describe the electronic transport in a quantum wire. We describe the theoretical scheme using a tight-binding model. The Hamiltonian of the wire is extended via a Lagrange multiplier to "open" the quantum system and to drive current through it. The diagonalization of the extended Hamiltonian yields the transport properties of wire. We show that the Lagrange multiplier method is equivalent to the Landauer approach within the considered model. (C) 2004 American Institute of Physics.
引用
收藏
页码:7165 / 7168
页数:4
相关论文
共 50 条
  • [21] MATHEMATICAL STUDY OF A LAGRANGE-MULTIPLIER TECHNIQUE FOR STIFF TRANSPORT PROBLEMS
    Negulescu, Claudia
    [J]. MULTISCALE MODELING & SIMULATION, 2021, 19 (02): : 802 - 829
  • [22] Neural networks based on Lagrange multiplier for nonlinear programming
    Inst of System Science, Acad Sinica, Beijing, China
    [J]. Tien Tzu Hsueh Pao, 1 (24-28):
  • [23] Temporal dependency based Lagrange multiplier adaptation for HEVC
    Guo, Hongwei
    Zhu, Ce
    Liu, Yuyang
    Ye, Mao
    Luo, Lei
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2020,
  • [24] Kinetic theory of cascade laser based on quantum wells and wires
    Elesin, V.F.
    Krasheninnikov, A.V.
    [J]. Physica A: Statistical Mechanics and its Applications, 1997, 241 (1-2): : 386 - 392
  • [25] Kinetic theory of cascade laser based on quantum wells and wires
    Elesin, VF
    Krasheninnikov, AV
    [J]. PHYSICA A, 1997, 241 (1-2): : 386 - 392
  • [26] SOME PROPERTIES OF THE LAGRANGE MULTIPLIER-MU IN DENSITY FUNCTIONAL THEORY
    NGUYENDANG, TT
    BADER, RFW
    ESSEN, H
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1982, 22 (05) : 1049 - 1058
  • [27] A penalty interpretation for the Lagrange multiplier fields in incompressible multipolar elasticity theory
    Fosdick, R
    Royer-Carfagni, G
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2005, 10 (04) : 389 - 413
  • [28] Ultrafast Wigner transport in quantum wires
    Nedjalkov, Mihail
    Vasileska, Dragica
    Atanassov, Emanouil
    Palankovski, Vassil
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2007, 6 (1-3) : 235 - 238
  • [29] Transport spectroscopy of quantum wires and superlattices
    Strasser, G
    Ploner, G
    Rauch, C
    Gornik, E
    [J]. THIN SOLID FILMS, 2000, 367 (1-2) : 267 - 276
  • [30] Transport and quantum noise in mesoscopic wires
    Torrès, J
    [J]. ANNALES DE PHYSIQUE, 2002, 27 (01) : 1 - +