A method for evaluating the fractal dimension in the plane, using coverings with crosses

被引:0
|
作者
Tricot, C [1 ]
机构
[1] Univ Clermont Ferrand, Lab Math Pures, F-63177 Aubiere, France
关键词
D O I
10.4064/fm172-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Various methods may be used to define the Minkowski-Bouligand dimension of a compact subset E in the plane. The best known is the box method. After introducing the notion of epsilon-connected set E-epsilon, we consider a new method based upon coverings of E-epsilon with crosses of diameter 2epsilon. To prove that this cross method gives the fractal dimension for all E, the main argument consists in constructing a special pavement of the complementary set with squares. This method gives rise to a dimension formula using integrals, which generalizes the well known variation method for graphs of continuous functions.
引用
收藏
页码:181 / 199
页数:19
相关论文
共 50 条
  • [31] Signal Characterization using Fractal Dimension
    Raghavendra, B. S.
    Dutt, D. Narayana
    2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 1522 - 1525
  • [32] On the arithmetic of fractal dimension using hyperhelices
    Toledo-Suarez, Carlos D.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 342 - 349
  • [33] Unsupervised clustering using fractal dimension
    Tasoulis, D. K.
    Vrahatis, M. N.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (07): : 2073 - 2079
  • [34] SIGNAL CHARACTERIZATION USING FRACTAL DIMENSION
    Raghavendra, B. S.
    Dutt, D. Narayana
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (03) : 287 - 292
  • [35] A new method for evaluating the pore structure complexity of digital rocks based on the relative value of fractal dimension
    Li, Xiaobin
    Wei, Wei
    Wang, Lei
    Ding, Pinbo
    Zhu, Linqi
    Cai, Jianchao
    MARINE AND PETROLEUM GEOLOGY, 2022, 141
  • [36] Fractal dimension based on Minkowski-Bouligand method using exponential dilations
    Luppe, M.
    ELECTRONICS LETTERS, 2015, 51 (06) : 475 - 476
  • [37] DEVELOPING A NEW METHOD FOR THE IDENTIFICATION OF MICROORGANISMS FOR THE FOOD INDUSTRY USING THE FRACTAL DIMENSION
    Castillo, Oscar
    Melin, Patricia
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1994, 2 (03) : 457 - 460
  • [38] Epilepsy Detection using a Naive Signal Decomposition Method Combined with Fractal Dimension
    Polat Dautov, Cigdem
    Ozerdem, Mehmet Sirac
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [39] Computing fractal dimension of signals using multiresolution box-counting method
    Raghavendra, B.S.
    Dutt, D. Narayana
    World Academy of Science, Engineering and Technology, 2010, 37 : 1266 - 1281
  • [40] ESTIMATING FRACTAL DIMENSION WITH THE DIVIDER METHOD IN GEOMORPHOLOGY
    ANDRLE, R
    GEOMORPHOLOGY, 1992, 5 (1-2) : 131 - 141