A method for evaluating the fractal dimension in the plane, using coverings with crosses

被引:0
|
作者
Tricot, C [1 ]
机构
[1] Univ Clermont Ferrand, Lab Math Pures, F-63177 Aubiere, France
关键词
D O I
10.4064/fm172-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Various methods may be used to define the Minkowski-Bouligand dimension of a compact subset E in the plane. The best known is the box method. After introducing the notion of epsilon-connected set E-epsilon, we consider a new method based upon coverings of E-epsilon with crosses of diameter 2epsilon. To prove that this cross method gives the fractal dimension for all E, the main argument consists in constructing a special pavement of the complementary set with squares. This method gives rise to a dimension formula using integrals, which generalizes the well known variation method for graphs of continuous functions.
引用
收藏
页码:181 / 199
页数:19
相关论文
共 50 条
  • [1] METHOD FOR EVALUATING THE FRACTAL DIMENSION OF CURVES USING CONVEX HULLS
    NORMANT, F
    TRICOT, C
    PHYSICAL REVIEW A, 1991, 43 (12): : 6518 - 6525
  • [2] Fractal dimension of profiles and surfaces using fuzzy morphological coverings
    Huang, CP
    Chaparro, LF
    Vallejo, LE
    ENGINEERING GEOLOGY, 1997, 48 (3-4) : 245 - 253
  • [3] EVALUATING THE FRACTAL DIMENSION OF SURFACES
    DUBUC, B
    ZUCKER, SW
    TRICOT, C
    QUINIOU, JF
    WEHBI, D
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1989, 425 (1868) : 113 - 127
  • [4] EVALUATING THE FRACTAL DIMENSION OF PROFILES
    DUBUC, B
    QUINIOU, JF
    ROQUESCARMES, C
    TRICOT, C
    ZUCKER, SW
    PHYSICAL REVIEW A, 1989, 39 (03) : 1500 - 1512
  • [5] EVALUATING THE FRACTAL DIMENSION OF A GRAPH
    TRICOT, C
    QUINIOU, JF
    WEHBI, D
    ROQUESCARMES, C
    DUBUC, B
    REVUE DE PHYSIQUE APPLIQUEE, 1988, 23 (02): : 111 - 124
  • [6] Fractal Dimension of Fractal Functions on the Real Projective Plane
    Hossain, Alamgir
    Akhtar, Md. Nasim
    Navascues, Maria A.
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [7] Integral formulation for the fractal dimension in the plane
    Tricot, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03): : 169 - 172
  • [8] A fractal dimension analysis: A new method for evaluating the response of anticancer therapy
    Omori, H
    Nio, Y
    Yano, S
    Itakura, M
    Koike, M
    Toga, T
    Matsuura, S
    ANTICANCER RESEARCH, 2002, 22 (04) : 2347 - 2354
  • [9] THE METHOD OF CALCULATING FRACTAL DIMENSION
    QING, G
    JOURNAL OF PATHOLOGY, 1995, 175 (04): : 461 - 461
  • [10] A method of computing fractal dimension
    Wei, R
    Dan, L
    Ling, X
    DCABES 2004, Proceedings, Vols, 1 and 2, 2004, : 888 - 890