Spatially anisotropic four-dimensional gauge interactions, planar fermions, and magnetic catalysis

被引:7
|
作者
Alexandre, J
Farakos, K
Koutsoumbas, G
Mavromatos, NE
机构
[1] Natl Tech Univ Athens, GR-15780 Athens, Greece
[2] Kings Coll London, Dept Phys Theoret Phys, London WC2R 2LS, England
关键词
D O I
10.1103/PhysRevD.64.125007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider magnetic catalysis in a field-theoretic system of (3+1)-dimensional Dirac fermions with an anisotropic kinetic term. By placing the system in a strong external magnetic field, we examine magnetically induced fermion mass generation. When the coupling anisotropy is strong, in which case the fermions effectively localize on the plane, we find a significant enhancement of the induced mass gap compared to the isotropic four-dimensional case of quantum electrodynamics. As expected on purely dimensional grounds, the mass and critical temperature scale with the square root of the magnetic field. This phenomenon might be related to recent experimental findings on magnetically induced gaps at the nodes of d-wave superconducting gaps in high-temperature cuprates.
引用
收藏
页数:10
相关论文
共 50 条