Partial matrices all of whose completions have the same spectrum

被引:2
|
作者
Huang, Zejun [2 ,3 ]
Zhan, Xingzhi [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Zhejiang A&F Univ, Sch Sci, Hangzhou 311300, Zhejiang, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
关键词
Partial matrix; Completion; Spectrum; Characteristic polynomial;
D O I
10.1016/j.laa.2011.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the square partial matrices over a field all of whose. completions have the same spectrum, and determine the maximum number of indeterminates in such partial matrices of a given order as well as the matrices that attain this maximum number. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3061 / 3064
页数:4
相关论文
共 50 条
  • [41] On Matrices Whose Cosquares are Diagonalizable and Have Real Spectra
    Ikramov, Kh. D.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2022, 15 (01) : 44 - 47
  • [42] MATRICES WHOSE POWERS EVENTUALLY HAVE CERTAIN PROPERTIES
    Ma, Chao
    Xie, Qimiao
    Zhong, Jin
    OPERATORS AND MATRICES, 2019, 13 (02): : 323 - 331
  • [43] On a conjecture about the Jordan form of completions of partial upper triangular matrices
    Silva, Fernando C.
    Linear Algebra and Its Applications, 1997, 260 (1-3): : 319 - 321
  • [44] Noncirculant Toeplitz matrices all of whose powers are Toeplitz
    Kent Griffin
    Jeffrey L. Stuart
    Michael J. Tsatsomeros
    Czechoslovak Mathematical Journal, 2008, 58 : 1185 - 1193
  • [45] NONCIRCULANT TOEPLITZ MATRICES ALL OF WHOSE POWERS ARE TOEPLITZ
    Griffin, Kent
    Stuart, Jeffrey L.
    Tsatsomeros, Michael J.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1185 - 1193
  • [46] MATRICES ALL OF WHOSE POWERS LIE CLOSE TO IDENTITY
    COX, RH
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (07): : 813 - &
  • [47] Random matrices have simple spectrum
    Terence Tao
    Van Vu
    Combinatorica, 2017, 37 : 539 - 553
  • [48] Random matrices have simple spectrum
    Tao, Terence
    Vu, Van
    COMBINATORICA, 2017, 37 (03) : 539 - 553
  • [49] Unicity of minimal rank completions for tri-diagonal partial block matrices
    Bostian, AA
    Woerdeman, HJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) : 23 - 55
  • [50] NONNEGATIVE MATRICES EACH OF WHOSE POSITIVE DIAGONALS HAS SAME SUM
    HEDRICK, MB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 59 (02) : 399 - 403