An evaluation of one-class classification techniques for speaker verification

被引:6
|
作者
Brew, Anthony [1 ]
Grimaldi, Marco [1 ]
Cunningham, Padraig [1 ]
机构
[1] Univ Coll Dublin, Dept Informat & Comp Sci, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
One-class classifiers; Speaker verification; Gaussian mixture models;
D O I
10.1007/s10462-008-9071-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Speaker verification is a challenging problem in speaker recognition where the objective is to determine whether a segment of speech in fact comes from a specific individual. In supervised machine learning terms this is a challenging problem as, while examples belonging to the target class are easy to gather, the set of counter-examples is completely open. This makes it difficult to cast this as a supervised classification problem as it is difficult to construct a representative set of counter examples. So we cast this as a one-class classification problem and evaluate a variety of state-of-the-art one-class classification techniques on a benchmark speech recognition dataset. We construct this as a two-level classification process whereby, at the lower level, speech segments of 20 ms in length are classified and then a decision on an complete speech sample is made by aggregating these component classifications. We show that of the one-class classification techniques we evaluate, Gaussian Mixture Models shows the best performance on this task.
引用
收藏
页码:295 / 307
页数:13
相关论文
共 50 条
  • [21] One-Class SVMs for Document Classification
    Manevitz, Larry M.
    Yousef, Malik
    Journal of Machine Learning Research, 2002, 2 : 139 - 154
  • [22] Optimised one-class classification performance
    Oliver Urs Lenz
    Daniel Peralta
    Chris Cornelis
    Machine Learning, 2022, 111 : 2863 - 2883
  • [23] Instance reduction for one-class classification
    Bartosz Krawczyk
    Isaac Triguero
    Salvador García
    Michał Woźniak
    Francisco Herrera
    Knowledge and Information Systems, 2019, 59 : 601 - 628
  • [24] Active Learning for One-Class Classification
    Barnabe-Lortie, Vincent
    Bellinger, Colin
    Japkowicz, Nathalie
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 390 - 395
  • [25] One-class remote sensing classification: one-class vs. binary classifiers
    Deng, Xueqing
    Li, Wenkai
    Liu, Xiaoping
    Guo, Qinghua
    Newsam, Shawn
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (06) : 1890 - 1910
  • [26] Feature extraction for one-class classification
    Tax, DMJ
    Müller, KR
    ARTIFICAIL NEURAL NETWORKS AND NEURAL INFORMATION PROCESSING - ICAN/ICONIP 2003, 2003, 2714 : 342 - 349
  • [27] Optimised one-class classification performance
    Lenz, Oliver Urs
    Peralta, Daniel
    Cornelis, Chris
    MACHINE LEARNING, 2022, 111 (08) : 2863 - 2883
  • [28] SHRINKAGE METHODS FOR ONE-CLASS CLASSIFICATION
    Nader, Patric
    Honeine, Paul
    Beauseroy, Pierre
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 135 - 139
  • [29] A dynamic one-class classification algorithm
    Xiao, JH
    Progress in Intelligence Computation & Applications, 2005, : 211 - 216
  • [30] One-class classification with Gaussian processes
    Kemmler, Michael
    Rodner, Erik
    Wacker, Esther-Sabrina
    Denzler, Joachim
    PATTERN RECOGNITION, 2013, 46 (12) : 3507 - 3518