机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Yan, Wei
[1
]
Li, Yongsheng
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Li, Yongsheng
[2
]
Zhang, Yimin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Zhang, Yimin
[3
]
机构:
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
In this paper we consider the Cauchy problem for the Novikov equation. We prove that the Cauchy problem for the Novikov equation is not locally well-posed in the Sobolev spaces with in the sense that its solutions do not depend uniformly continuously on the initial data. Since the Cauchy problem for the Novikov equation is locally well-posed in with s > 3/2 in the sense of Hadamard, our result implies that s = 3/2 is the critical Sobolev index for well-posedness. We also present two blow-up results of strong solution to the Cauchy problem for the Novikov equation in with s > 3/2.
机构:
LD Landau Inst Theoret Phys, Chernogolovka 142432, Russia
Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, RussiaLD Landau Inst Theoret Phys, Chernogolovka 142432, Russia
Grinevich, P. G.
Santini, P. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, ItalyLD Landau Inst Theoret Phys, Chernogolovka 142432, Russia