GRE: A GAT-Based Relation Embedding Model of Knowledge Graph for Recommendation

被引:0
|
作者
Wang, Jihu [1 ]
Shi, Yuliang [1 ,2 ]
Cheng, Lin [1 ]
Zhang, Kun [3 ]
Chen, Zhiyong [1 ]
机构
[1] Shandong Univ, Sch Software, Jinan, Peoples R China
[2] Dareway Software Co Ltd, Jinan, Peoples R China
[3] Univ Jinan, Sch Informat Sci & Engn, Jinan, Peoples R China
关键词
Recommender systems; Knowledge graph; Graph attention networks;
D O I
10.1007/978-981-19-4549-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared with collaborative filtering, knowledge graph embedding based recommender systems greatly boost the information retrieval accuracy and solve the limitations of data sparsity and cold start of traditional collaborative filtering. In order to fully explore the relationship and structure information hidden in knowledge graphs, we propose the GAT-based RelationEmbedding (GRE) model. In our model, we propose a Triple Set to denote a set of knowledge graph triples whose head entities are linked by items in interaction records, and a Triple Group to denote a group of knowledge graph triples extracted from Triple Set according to different relations. The proposed GRE is a neural model that aims at enriching user preference representation in recommender systems by utilizing Graph Attention Network (GAT) to aggregate the embeddings of adjacent tail entities to head entity over Triple Group and embedding the representation of relation in the process of polymerization of Triple Groups in Triple Set. By embedding relation information into each Triple Group representation and concatenating Triple Group representations in Triple Set, this proposed novel relation embedding method addresses the problem that GAT-based models only consider aggregating the neighboring entities and ignore the effect of relations in triples. Through extensive experimental comparisons with the baselines, we show that GRE has gained state-of-the-art performance in the majority of the cases on two open-source datasets.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 50 条
  • [41] POI Recommendation Based on Heterogeneous Graph Embedding
    Mighan, Sima Naderi
    Kahani, Mohsen
    Pourgholamali, Fateme
    2019 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE 2019), 2019, : 188 - 193
  • [42] A Knowledge Graph Embedding Based Service Recommendation Method for Service-Based System Development
    Xie, Fang
    Zhang, Yiming
    Przystupa, Krzysztof
    Kochan, Orest
    ELECTRONICS, 2023, 12 (13)
  • [43] SMR: Medical Knowledge Graph Embedding for Safe Medicine Recommendation
    Gong, Fan
    Wang, Meng
    Wang, Haofen
    Wang, Sen
    Liu, Mengyue
    BIG DATA RESEARCH, 2021, 23
  • [44] Similarity attributed knowledge graph embedding enhancement for item recommendation
    Khan, Nasrullah
    Ma, Zongmin
    Ullah, Aman
    Polat, Kemal
    INFORMATION SCIENCES, 2022, 613 : 69 - 95
  • [45] Top-N Collaborative Filtering Recommendation Algorithm Based on Knowledge Graph Embedding
    Zhu, Ming
    Zhen, De-sheng
    Tao, Ran
    Shi, You-qun
    Feng, Xiang-yang
    Wang, Qian
    KNOWLEDGE MANAGEMENT IN ORGANIZATIONS, KMO 2019, 2019, 1027 : 122 - 134
  • [46] KGDM: A Diffusion Model to Capture Multiple Relation Semantics for Knowledge Graph Embedding
    Long, Xiao
    Zhuang, Liansheng
    Li, Aodi
    Wei, Jiuchang
    Li, Houqiang
    Wang, Shafei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8850 - 8858
  • [47] A Personalized Attractions Recommendation Model based on Tourism Knowledge graph
    Jiang, Qi
    INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMOTE SENSING AND BIG DATA (ERSBD 2021), 2021, 12129
  • [48] Knowledge Graph Recommendation Model Based on Feature Space Fusion
    Zhang, Suqi
    Wang, Xinxin
    Wang, Rui
    Gu, Junhua
    Li, Jianxin
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [49] A Temporal Knowledge Graph Embedding Model Based on Variable Translation
    Han, Yadan
    Lu, Guangquan
    Zhang, Shichao
    Zhang, Liang
    Zou, Cuifang
    Wen, Guoqiu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (05): : 1554 - 1565
  • [50] A Novel Embedding Model for Knowledge Graph Completion Based on Quaternion
    Gao, Haipeng
    Yang, Kun
    Yang, Yuxue
    Qin, Ke
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2021), 2021, : 470 - 474