Recurrent random walks on homogeneous spaces of p-adic algebraic groups of polynomial growth

被引:2
|
作者
Raja, C. Robinson Edward [1 ]
Schott, Rene [2 ]
机构
[1] Indian Stat Inst, Stat Math Unit, Bangalore 560059, Karnataka, India
[2] Univ Henri Poincare, ICEN & Poincare, Nancy, France
关键词
Random walks; recurrence; polynomial growth; p-adic algebraic group;
D O I
10.1007/s00013-008-2663-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a p-adic algebraic group of polynomial growth and H be a closed subgroup of G. We prove the growth conjecture for the homogeneous space G/H, that is, G/H supports a recurrent random walk if and only if G/H has polynomial growth of degree atmost two.
引用
收藏
页码:379 / 384
页数:6
相关论文
共 50 条
  • [21] Commutative algebraic groups and p-adic linear forms
    Fuchs, Clemens
    Duc Hiep Pham
    ACTA ARITHMETICA, 2015, 169 (02) : 115 - 147
  • [22] Algebraic actions of discrete groups: the p-adic method
    Cantat, Serge
    Xie, Junyi
    ACTA MATHEMATICA, 2018, 220 (02) : 239 - 295
  • [23] Continuous Time p-Adic Random Walks and Their Path Integrals
    Erik Bakken
    David Weisbart
    Journal of Theoretical Probability, 2019, 32 : 781 - 805
  • [24] Continuous Time p-Adic Random Walks and Their Path Integrals
    Bakken, Erik
    Weisbart, David
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (02) : 781 - 805
  • [25] AN ANALOGUE OF THE CARTAN DECOMPOSITION FOR p-ADIC SYMMETRIC SPACES OF SPLIT p-ADIC REDUCTIVE GROUPS
    Delorme, Patrick
    Secherre, Vincent
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (01) : 1 - 21
  • [26] On approximation of p-adic numbers by p-adic algebraic numbers
    Beresnevich, VV
    Bernik, VI
    Kovalevskaya, EI
    JOURNAL OF NUMBER THEORY, 2005, 111 (01) : 33 - 56
  • [27] How Far Are p-Adic Lie Groups from Algebraic Groups?
    Benoist, Yves
    Quint, Jean-Francois
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 72 : 3 - 23
  • [28] p-Adic Brownian Motion as a Limit of Discrete Time Random Walks
    Bakken, Erik
    Weisbart, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (02) : 371 - 402
  • [29] On an algebraic approach to the Zelevinsky classification for classical p-adic groups
    Hanzer, Marcela
    Muic, Goran
    JOURNAL OF ALGEBRA, 2008, 320 (08) : 3206 - 3231
  • [30] On the power maps, orders and exponentiality of p-adic algebraic groups
    Chatterjee, Pralay
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 629 : 201 - 220