Infrared and visible image fusion using modified spatial frequency-based clustered dictionary

被引:5
|
作者
Budhiraja, Sumit [1 ]
Sharma, Rajat [1 ]
Agrawal, Sunil [1 ]
Sohi, Balwinder S. [2 ]
机构
[1] Panjab Univ, UIET, ECE, Chandigarh 160014, India
[2] Chandigarh Univ, Mohali 140413, Punjab, India
关键词
Image fusion; Sparse representation; Dictionary learning; Spatial frequency; Online dictionary learning; CONTOURLET TRANSFORM; PERFORMANCE; VIDEO; ALGORITHM; COLOR;
D O I
10.1007/s10044-020-00919-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Infrared and visible image fusion is an active area of research as it provides fused image with better scene information and sharp features. An efficient fusion of images from multisensory sources is always a challenge for researchers. In this paper, an efficient image fusion method based on sparse representation with clustered dictionary is proposed for infrared and visible images. Firstly, the edge information of visible image is enhanced by using a guided filter. To extract more edge information from the source images, modified spatial frequency is used to generate a clustered dictionary from the source images. Then, non-subsampled contourlet transform (NSCT) is used to obtain low-frequency and high-frequency sub-bands of the source images. The low-frequency sub-bands are fused using sparse coding, and the high-frequency sub-bands are fused using max-absolute rule. The final fused image is obtained by using inverse NSCT. The subjective and objective evaluations show that the proposed method is able to outperform other conventional image fusion methods.
引用
收藏
页码:575 / 589
页数:15
相关论文
共 50 条
  • [21] Infrared and visible image fusion using NSCT and GGD
    Zhang, Xiuqiong
    Liu, Cuiyin
    Men, Tao
    Qin, Hongyin
    Wang, Mingrong
    THIRD INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2011), 2011, 8009
  • [22] Infrared and Visible Image Fusion Based on Tetrolet Transform
    Zhou, Xin
    Wang, Wei
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2016, 386 : 701 - 708
  • [23] Infrared and Visible Image Fusion Based on NSST and RDN
    Yan, Peizhou
    Zou, Jiancheng
    Li, Zhengzheng
    Yang, Xin
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 28 (01): : 213 - 225
  • [24] Attribute filter based infrared and visible image fusion
    Mo, Yan
    Kang, Xudong
    Duan, Puhong
    Sun, Bin
    Li, Shutao
    INFORMATION FUSION, 2021, 75 : 41 - 54
  • [25] An Infrared and Visible Image Fusion Algorithm Based on MAP
    Kang Kai
    Liu Tingting
    Wang Tianyun
    Nian Fuchun
    Xu Xianchun
    17TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN2018), 2019, 11048
  • [26] Infrared and Visible Image Fusion Based on Sparse Feature
    Ding Wen-shan
    Bi Du-yan
    He Lin-yuan
    Fan Zun-lin
    Wu Dong-peng
    ACTA PHOTONICA SINICA, 2018, 47 (09)
  • [27] Infrared and Visible Image Fusion Based on Semantic Segmentation
    Zhou H.
    Hou J.
    Wu W.
    Zhang Y.
    Wu Y.
    Ma J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (02): : 436 - 443
  • [28] Infrared and visible image fusion based on FRC algorithm
    Dai L.-Y.
    Liu G.
    Xiao G.
    Ruan J.-J.
    Zhu J.-L.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (11): : 2690 - 2698
  • [29] Visible and Infrared Image Fusion Based on Curvelet Transform
    Quan, Siji
    Qian, Weiping
    Guo, Junhai
    Zhao, Hua
    2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 828 - 832