The relationship between the plasmapause and outer belt electrons

被引:15
|
作者
Goldstein, J. [1 ,2 ]
Baker, D. N. [3 ]
Blake, J. B. [4 ]
De Pascuale, S. [5 ]
Funsten, H. O. [6 ]
Jaynes, A. N. [3 ]
Jahn, J-M. [1 ,2 ]
Kletzing, C. A. [5 ]
Kurth, W. S. [5 ]
Li, W. [7 ]
Reeves, G. D. [6 ]
Spence, H. E. [8 ]
机构
[1] Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA
[2] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA
[3] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[4] Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA
[5] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[6] Los Alamos Natl Lab, Los Alamos, NM USA
[7] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
[8] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
关键词
radiation belts; plasmapause; plasmaspheric hiss; storm-time dropouts; Van Allen Probes; simulation; VAN ALLEN PROBES; PITCH-ANGLE SCATTERING; ION-CYCLOTRON WAVES; RADIATION-BELT; RELATIVISTIC ELECTRONS; EMIC WAVES; ULTRARELATIVISTIC ELECTRONS; INNER MAGNETOSPHERE; PLASMASPHERIC HISS; 30; SEPTEMBER;
D O I
10.1002/2016JA023046
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5day period, 15-20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8-7.7MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10cm(-3). We identify two outer belts. Outer belt 1 is a stable zone of >3MeV electrons located 1-2R(E) inside the plasmapause. Outer belt 2 is a dynamic zone of <3MeV electrons within 0.5R(E) of the moving plasmapause. Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index F-p, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15-20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5day period).
引用
收藏
页码:8392 / 8416
页数:25
相关论文
共 50 条
  • [41] SIMULTANEOUS EQUATORIAL MEASUREMENTS OF WAVES AND PRECIPITATING ELECTRONS IN THE OUTER RADIATION BELT
    IMHOF, WL
    ROBINSON, RM
    COLLIN, HL
    WYGANT, JR
    ANDERSON, RR
    GEOPHYSICAL RESEARCH LETTERS, 1992, 19 (24) : 2437 - 2440
  • [42] THEORETICAL STUDY OF SUBSTORM ACCELERATION OF RELATIVISTIC ELECTRONS IN OUTER RADIATION BELT
    LEZNIAK, TW
    WINCKLER, JR
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (11): : 907 - &
  • [43] Comparative Observations of the Outer Belt Electron Fluxes and Precipitated Relativistic Electrons
    Vidal-Luengo, Sergio E.
    Blum, Lauren W.
    Bruno, Alessandro
    Guzik, T. Gregory
    de Nolfo, Georgia
    Ficklin, Anthony W.
    Kataoka, Ryuho
    Torii, Shoji
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (12)
  • [44] On the semi-annual variation of relativistic electrons in the outer radiation belt
    Katsavrias, Christos
    Papadimitriou, Constantinos
    Aminalragia-Giamini, Sigiava
    Daglis, Ioannis A.
    Sandberg, Ingmar
    Jiggens, Piers
    ANNALES GEOPHYSICAE, 2021, 39 (03) : 413 - 425
  • [45] Evolution of relativistic outer belt electrons during an extended quiescent period
    Jaynes, A. N.
    Li, X.
    Schiller, Q. G.
    Blum, L. W.
    Tu, W.
    Turner, D. L.
    Ni, B.
    Bortnik, J.
    Baker, D. N.
    Kanekal, S. G.
    Blake, J. B.
    Wygant, J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (12) : 9558 - 9566
  • [46] Numerical simulation of resonant scattering of energetic electrons in the outer radiation belt
    Yuto Katoh
    Takayuki Ono
    Masahide Iizima
    Earth, Planets and Space, 2005, 57 : 117 - 124
  • [47] LONGITUDINAL BUNCHING OF HIGH-ENERGY OUTER-BELT ELECTRONS
    BROWN, WL
    BREWER, HR
    SCHULZ, M
    ROBERTS, CS
    ROBBINS, MF
    LANZEROT.LJ
    ROEDERER, JG
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1968, 49 (01): : 228 - &
  • [48] Main-phase creation of "seed" electrons in the outer radiation belt
    Obara, T
    Nagatsuma, T
    Den, M
    Miyoshi, Y
    Morioka, A
    EARTH PLANETS AND SPACE, 2000, 52 (01): : 41 - 47
  • [49] DYNAMICS OF OUTER BELT OF ENERGETIC ELECTRONS DURING MODERATE MAGNETIC DISTURBANCES
    VAKULOV, PV
    KOVRYGINA, LM
    MINEEV, YV
    TVERSKAYA, LV
    GEOMAGNETIZM I AERONOMIYA, 1975, 15 (06): : 1028 - 1032
  • [50] Effect of Chorus Latitudinal Distribution on Evolution of Outer Radiation Belt Electrons
    肖伏良
    李君求
    唐立军
    贺艺华
    厉江帆
    Plasma Science and Technology, 2009, (05) : 544 - 549