Enforced Sparse Non-Negative Matrix Factorization

被引:0
|
作者
Gavin, Brendan [1 ,2 ]
Gadepally, Vijay [2 ]
Kepner, Jeremy [2 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
[2] MIT, Lincoln Lab, Cambridge, MA 02139 USA
关键词
ALGORITHMS;
D O I
10.1109/IPDPSW.2016.58
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Non-negative matrix factorization (NMF) is a dimensionality reduction algorithm for data that can be represented as an undirected bipartite graph. It has become a common method for generating topic models of text data because it is known to produce good results, despite its relative simplicity of implementation and ease of computation. One challenge with applying the NMF to large datasets is that intermediate matrix products often become dense, thus stressing the memory and compute elements of the underlying system. In this article, we investigate a simple but powerful modification of the alternating least squares method of determining the NMF of a sparse matrix that enforces the generation of sparse intermediate and output matrices. This method enables the application of NMF to large datasets through improved memory and compute performance. Further, we demonstrate, empirically, that this method of enforcing sparsity in the NMF either preserves or improves both the accuracy of the resulting topic model and the convergence rate of the underlying algorithm.
引用
收藏
页码:902 / 911
页数:10
相关论文
共 50 条
  • [41] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [42] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [43] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +
  • [44] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [45] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +
  • [46] Bayesian Non-negative Matrix Factorization
    Schmidt, Mikkel N.
    Winther, Ole
    Hansen, Lars Kai
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 540 - +
  • [47] Hyperspectral unmixing of sparse non-negative matrix factorization based on volume constraints
    Wang S.
    Han Y.
    Wang L.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2019, 40 (12): : 2077 - 2082
  • [48] Non-Negative Matrix Factorization Based on Smoothing and Sparse Constraints for Hyperspectral Unmixing
    Jia, Xiangxiang
    Guo, Baofeng
    SENSORS, 2022, 22 (14)
  • [49] Study on characteristic dimension and sparse factor in Non-negative Matrix Factorization algorithm
    Hou Mo
    Yang Mao-yun
    Qiao Shu-yun
    Wang Gai-ge
    Gao Li-qun
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 2957 - 2961
  • [50] Wide angle SAR imaging via sparse non-negative matrix factorization
    Xu, Ran
    Li, Yachao
    Xing, Mengdao
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2014, 41 (03): : 49 - 55