Algebraic multigrid methods for magnetostatic field problems

被引:11
|
作者
Reitzinger, S [1 ]
Kaltenbacher, M
机构
[1] Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Univ Erlangen Nurnberg, Dept Sensor Technol, D-91052 Erlangen, Germany
基金
奥地利科学基金会;
关键词
algebraic multigrid method; Lagrange and Nedelec finite element functions;
D O I
10.1109/20.996126
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The finite-element (FE) method, which will be used for the discretization of three-dimensional magnetostatic field problems, usually yields a large and sparse matrix equation. For different FE-discretizations (i.e., Lagrange and Nedelec FE-functions) we will present appropriate algebraic multigrid solvers (preconditioners) for the efficient solution of the arising system of equations. Numerical results will demonstrate the applicability of the developed algebraic multigrid methods.
引用
收藏
页码:477 / 480
页数:4
相关论文
共 50 条
  • [21] A new algebraic multigrid approach for Stokes problems
    Notay, Yvan
    NUMERISCHE MATHEMATIK, 2016, 132 (01) : 51 - 84
  • [22] A new algebraic multigrid approach for Stokes problems
    Yvan Notay
    Numerische Mathematik, 2016, 132 : 51 - 84
  • [23] Multigrid methods: from geometrical to algebraic versions
    Haase, G
    Langer, U
    MODERN METHODS IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2002, 75 : 103 - 153
  • [24] MULTIGRID METHODS - ALGEBRAIC FORMALIZATION AND DEMONSTRATION OF CONVERGENCE
    MUSY, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (07): : 471 - 474
  • [25] Algebraic multigrid methods based on element preconditioning
    Haase, G
    Langer, U
    Reitzinger, S
    Schöberl, J
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 78 (04) : 575 - 598
  • [26] ON THE IDEAL INTERPOLATION OPERATOR IN ALGEBRAIC MULTIGRID METHODS
    Xu, Xuefeng
    Zhang, Chen-Song
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1693 - 1710
  • [27] Solution of nonlinear magnetic field problems by Krylov-subspace methods with η-cycle wavelet-based algebraic multigrid preconditioning
    Pereira, Fabio Henrique
    Rodrigues Filho, Bruno A.
    Silva, Viviane C.
    Nabeta, Silvio I.
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 950 - 953
  • [28] ON MULTIGRID METHODS FOR PARABOLIC PROBLEMS
    LARSSON, S
    THOMEE, V
    ZHOU, SZ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1995, 13 (03) : 193 - 205
  • [29] MULTIGRID METHODS FOR OBSTACLE PROBLEMS
    Graeser, Carsten
    Kornhuber, Ralf
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (01) : 1 - 44
  • [30] MULTIGRID METHODS FOR OBSTACLE PROBLEMS
    Carsten Grser
    Ralf Kornhuber
    JournalofComputationalMathematics, 2009, 27 (01) : 1 - 44