Study on Mechanical and Thermal Properties of Poly(Lactic acid)/Poly(Butylene adipate-co-terephthalate)/Office Wastepaper Fiber Biodegradable Composites

被引:35
|
作者
Xu, Chong [1 ]
Zhang, Xiaolin [1 ]
Jin, Xiao [1 ]
Nie, Sunjian [1 ]
Yang, Rui [1 ]
机构
[1] Xian Univ Technol, Fac Printing Packing Engn & Digital Media Technol, Xian 710048, Shaanxi, Peoples R China
关键词
Biocomposite; Mechanical properties; Thermal properties; Interface modification; CALCIUM-CARBONATE; GRAPHENE OXIDE; CELLULOSE; MORPHOLOGY; PAPER; BEHAVIOR; DENSITY; GREEN; WOOD; PLA;
D O I
10.1007/s10924-019-01428-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Office wastepaper fibers(OWF)/poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) (PLA) biodegradable composites with different mass ratio were made by melt blending and injection moulding process. At the same time, the use of MAPLA and KH560 was studied as a potential approach for improving interfacial adhesion between OWF, PBAT and PLA. The results revealed that with the increasing of PBAT, the notched impact strength of PLA/PBAT/OWF composites can be first increased and then decreased. When the content of PBAT was 20wt%, the notch impact strength of PLA/PBAT/OWF composite was the highest, increased by 291% compared with pure PLA. TGA results revealed that the onset degradation temperature of the composites can be increased and its thermal decomposition step can be changed. According to the crystallization and melting performance table, OWF can act as nucleating agent to promote the crystallization properties of composites, while PBAT can prevent the crystallization and the higher the content is, the more obvious it is. It can be seen from the SEM figures that the addition of MAPLA and KH560 simultaneously makes the composites interface bond closer, thus improving the interface performance of PLA/20PBAT/OWF composite. Among the three kinds of modified composites, PLA/20PBAT/OWF/MK composite has the lowest water absorption and the best comprehensive performance.
引用
收藏
页码:1273 / 1284
页数:12
相关论文
共 50 条
  • [21] Biodegradable composites of modified holocellulose, poly(butylene adipate-co-terephthalate), and polylactic acid: Preparation and properties
    Chen, Yi
    Feng, Ting
    Li, Yongshuang
    Pan, Cheng
    Cheng, Qunpeng
    Fan, Guozhi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 283
  • [22] Effects of biodegradable poly(butylene adipate-co-terephthalate) and poly(lactic acid) plastic degradation on soil ecosystems
    Dissanayake, Pavani Dulanja
    Withana, Piumi Amasha
    Sang, Mee Kyung
    Cho, Yoora
    Park, Jeyoung
    Oh, Dongyeop X.
    Chang, Scott X.
    Lin, Carol Sze Ki
    Bank, Michael S.
    Hwang, Sung Yeon
    Ok, Yong Sik
    SOIL USE AND MANAGEMENT, 2024, 40 (02)
  • [23] Heat Treatment Effects on the Mechanical Properties and Morphologies of Poly (Lactic Acid)/Poly (Butylene Adipate-co-terephthalate) Blends
    Chiu, Hsien-Tang
    Huang, Szu-Yuan
    Chen, Yan-Fu
    Kuo, Ming-Tai
    Chiang, Tzong-Yiing
    Chang, Chi-Yung
    Wang, Yu-Hsiang
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2013, 2013
  • [24] Morphological and mechanical properties of biodegradable poly(glycolic acid)/poly(butylene adipate-co-terephthalate) blends with in situ compatibilization
    Wang, Rong
    Sun, Xiaojie
    Chen, Lanlan
    Liang, Wenbin
    RSC ADVANCES, 2021, 11 (03) : 1241 - 1249
  • [25] Thermal and mechanical properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/calcium carbonate composite with single continuous morphology
    Song, Qinghuan
    E-POLYMERS, 2022, 22 (01) : 1007 - 1020
  • [26] Enzymatic Degradation of Poly(Butylene Adipate-co-Terephthalate)/Poly(Lactic Acid) Blends
    Benninga, Joël
    Lima, Guilherme Macedo R.
    Érsek, Gábor
    Portale, Giuseppe
    Folkersma, Rudy
    Voet, Vincent S. D.
    Loos, Katja
    Journal of Polymer Science, 2024,
  • [27] Enzymatic Degradation of Poly(Butylene Adipate-co-Terephthalate)/Poly(Lactic Acid) Blends
    Benninga, Joel
    Lima, Guilherme Macedo R.
    Ersek, Gabor
    Portale, Giuseppe
    Folkersma, Rudy
    Voet, Vincent S. D.
    Loos, Katja
    JOURNAL OF POLYMER SCIENCE, 2024,
  • [28] Study of biodegradable polyactide/poly(butylene adipate-co-terephthalate) blends
    Jiang, L
    Wolcott, MP
    Zhang, JW
    BIOMACROMOLECULES, 2006, 7 (01) : 199 - 207
  • [29] High Performance and Fully Biodegradable Poly (lactic acid) (PLA) Composites Modified by Poly (Butylene Adipate-co-terephthalate) (PBAT): a Review
    Wang X.
    Shi M.
    Yu X.
    Peng S.
    Zhao X.
    Cailiao Daobao/Materials Reports, 2019, 33 (06): : 1897 - 1909
  • [30] The effect of isocyanate on the properties of poly(butylene adipate-co-terephthalate)/Kenaf fiber composites
    Jeon, Seon Mi
    Choo, Ji Eun
    Park, Tae Hyeong
    Hwang, Sung Wook
    POLYMER COMPOSITES, 2024, 45 (12) : 10799 - 10811