Comparison of optical performance monitoring techniques using artificial neural networks

被引:1
|
作者
Ribeiro, Vitor [1 ]
Lima, Mario [1 ]
Teixeira, Antonio [1 ]
机构
[1] Inst Telecomunicacoes, P-3810193 Aveiro, Portugal
来源
NEURAL COMPUTING & APPLICATIONS | 2013年 / 23卷 / 3-4期
关键词
Optical performance monitoring; Artificial neural networks; Partial least squares; Parametric asynchronous eye diagram; Delay-Tap Asynchronous Sampling; Asynchronous amplitude histograms; DISPERSION;
D O I
10.1007/s00521-013-1405-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we make an overview of three techniques that have used artificial neural networks (ANNs) to model impairments in optical fiber. A comparison between a linear partial least squares regression algorithm and ANN is also shown. We demonstrate that nonlinear modeling is required for multi-impairment monitoring in optical fiber when using Parametric Asynchronous Eye Diagram (PAED). Results demonstrating the accuracy of PAED are also shown. A comparison between PAED and Synchronous Eye Diagrams is also demonstrated, for NRZ, RZ and QPSK modulated signals. We show that PAED can provide comprehensible diagrams for QPSK modulated signals, under a certain range of chromatic dispersion.
引用
收藏
页码:583 / 589
页数:7
相关论文
共 50 条
  • [41] Automatic defect characterization using artificial neural networks and deconvolution techniques
    Jian, X.
    Guo, N.
    Du, H.
    Li, M. X.
    Zhang, H. L.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2006, 17 (8-9) : 713 - 720
  • [42] Automatic flaw characterization using artificial neural networks and deconvolution techniques
    Jian, XM
    Guo, N
    Du, H
    Li, MX
    Zhang, HL
    SMART MATERIALS FOR ENGINEERING AND BIOMEDICAL APPLICATIONS, PROCEEDINGS, 2004, : 115 - 124
  • [43] Using preprocessing techniques in air quality forecasting with artificial neural networks
    Kyriakidis, Ioannis
    Karatzas, Kostas D.
    Papadourakis, George
    Environmental Science and Engineering (Subseries: Environmental Science), 2009, : 357 - 372
  • [44] Intelligent Mineral Identification Using Clustering and Artificial Neural Networks Techniques
    Izadi, Hossein
    Sadri, Javad
    Mehran, Nosrat-Agha
    2013 FIRST IRANIAN CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (PRIA), 2013,
  • [45] AIRCRAFT CLASSIFICATION USING IMAGE PROCESSING TECHNIQUES AND ARTIFICIAL NEURAL NETWORKS
    Karacor, Adil Gursel
    Torun, Erdal
    Abay, Rasit
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (08) : 1321 - 1335
  • [46] Using Preprocessing Techniques in Air Quality forecasting with Artificial Neural Networks
    Kyriakidis, Ioannis
    Karatzas, Kostas D.
    Papadourakis, George
    INFORMATION TECHNOLOGIES IN ENVIRONMENTAL ENGINEERING, 2009, : 357 - +
  • [47] Artificial neural networks in optical communications
    Frackerton, B
    Giakos, GC
    Sobczyk, B
    Formica, V
    Patnekar, N
    VIMS 2002: IEEE INTERNATIONAL SYMPOSIUM ON VIRTUAL AND INTELLIGENT MEASUREMENT SYSTEMS: DISTRIBUTED INTELLIGENT SENSING FOR ADVANCED INTEGRATED VIRTUAL ENVIRONMENTS, 2002, : 136 - 139
  • [48] Monitoring of ground moling performance using neural network techniques
    Starkey, AJ
    Rodger, AA
    Neilson, RD
    Penman, J
    COMADEM '99, PROCEEDINGS, 1999, : 525 - 531
  • [49] Data mining using neural networks and statistical techniques: A comparison
    Zurada, J
    Salam, AF
    SYSTEMS DEVELOPMENT METHODS FOR DATABASES, ENTERPRISE MODELING, AND WORKFLOW MANAGEMENT, 1999, : 299 - 311
  • [50] Performance monitoring in optical networks using Stokes parameters
    Petersson, M
    Sunnerud, H
    Karlsson, M
    Olsson, BE
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (02) : 686 - 688