Probabilistic topic models for sequence data

被引:21
|
作者
Barbieri, Nicola [1 ]
Manco, Giuseppe [2 ]
Ritacco, Ettore [2 ]
Carnuccio, Marco [3 ]
Bevacqua, Antonio [3 ]
机构
[1] Yahoo Res, Barcelona, Spain
[2] Italian Natl Res Council, Inst High Performance Comp & Networks ICAR, I-87036 Arcavacata Di Rende, CS, Italy
[3] Univ Calabria, Dept Elect Informat & Syst, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Recommender systems; Collaborative filtering; Probabilistic topic models; Performance;
D O I
10.1007/s10994-013-5391-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic topic models are widely used in different contexts to uncover the hidden structure in large text corpora. One of the main (and perhaps strong) assumption of these models is that generative process follows a bag-of-words assumption, i.e. each token is independent from the previous one. We extend the popular Latent Dirichlet Allocation model by exploiting three different conditional Markovian assumptions: (i) the token generation depends on the current topic and on the previous token; (ii) the topic associated with each observation depends on topic associated with the previous one; (iii) the token generation depends on the current and previous topic. For each of these modeling assumptions we present a Gibbs Sampling procedure for parameter estimation. Experimental evaluation over real-word data shows the performance advantages, in terms of recall and precision, of the sequence-modeling approaches.
引用
收藏
页码:5 / 29
页数:25
相关论文
共 50 条
  • [41] Estimating Functional Groups in Human Gut Microbiome With Probabilistic Topic Models
    Chen, Xin
    He, TingTing
    Hu, Xiaohua
    Zhou, Yanhong
    An, Yuan
    Wu, Xindong
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2012, 11 (03) : 203 - 215
  • [42] Combining semantic graph and probabilistic topic models for discovering coherent topics
    Allahyari, Mehdi
    Pouriyeh, Seyedamin
    Kochut, Krys
    WEB INTELLIGENCE, 2019, 17 (04) : 365 - 379
  • [43] Visual topic models for healthcare data clustering
    K. Rajendra Prasad
    Moulana Mohammed
    R. M. Noorullah
    Evolutionary Intelligence, 2021, 14 : 545 - 562
  • [44] Visual topic models for healthcare data clustering
    Prasad, K. Rajendra
    Mohammed, Moulana
    Noorullah, R. M.
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (02) : 545 - 562
  • [45] Topic Models for RFID Data Modeling and Localization
    Kennedy, T. F.
    Provence, Robert S.
    Broyan, James L.
    Fink, Patrick W.
    Ngo, Phong H.
    Rodriguez, Lazaro D.
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1438 - 1445
  • [46] Topic Models Vs. Unstructured Data
    Anthes, Gary
    COMMUNICATIONS OF THE ACM, 2010, 53 (12) : 16 - 18
  • [47] Application of dynamic topic models to toxicogenomics data
    Lee, Mikyung
    Liu, Zhichao
    Huang, Ruili
    Tong, Weida
    BMC BIOINFORMATICS, 2016, 17
  • [48] Application of dynamic topic models to toxicogenomics data
    Mikyung Lee
    Zhichao Liu
    Ruili Huang
    Weida Tong
    BMC Bioinformatics, 17
  • [49] Using Probabilistic Models for Data Compression
    Iatan, Iuliana
    Dragan, Mihaita
    Dedu, Silvia
    Preda, Vasile
    MATHEMATICS, 2022, 10 (20)
  • [50] Probabilistic unfolding models for sensory data
    MacKay, DB
    FOOD QUALITY AND PREFERENCE, 2001, 12 (5-7) : 427 - 436