DEGREE DISTANCE AND MINIMUM DEGREE

被引:28
|
作者
Mukwembi, S. [1 ]
Munyira, S. [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Univ Zimbabwe, Dept Math, Harare, Zimbabwe
基金
新加坡国家研究基金会;
关键词
degree distance; minimum degree; diameter; MOLECULAR TOPOLOGICAL INDEX; WIENER INDEX; GRAPH;
D O I
10.1017/S0004972712000354
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite connected graph of order n, minimum degree delta and diameter d. The degree distance D'(G) of G is defined as Sigma({u,v}subset of V(G))(deg u + deg v) d(u, v), where deg w is the degree of vertex w and d(u; v) denotes the distance between u and v. In this paper, we find an asymptotically sharp upper bound on the degree distance in terms of order, minimum degree and diameter. In particular, we prove that D'(G) <= 1/4 dn(n - d/3 (delta + 1))(2) + O(n(3)). As a corollary, we obtain the bound D'(G) <= n(4)/(9(delta + 1)) + O(n(3)) for a graph G of order n and minimum degree delta. This result, apart from improving on a result of Dankelmann et al. ['On the degree distance of a graph', Discrete Appl. Math. 157 (2009), 2773-2777] for graphs of given order and minimum degree, completely settles a conjecture of Tomescu ['Some extremal properties of the degree distance of a graph', Discrete Appl. Math. 98 (1999), 159-163].
引用
收藏
页码:255 / 271
页数:17
相关论文
共 50 条
  • [41] Proximity, remoteness and minimum degree
    Dankelmann, Peter
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 223 - 228
  • [42] Matching extension and minimum degree
    Ananchuen, N
    Caccetta, L
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 1 - 13
  • [43] Graph Minors and Minimum Degree
    Fijavz, Gasper
    Wood, David R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [44] MINIMUM DEGREE GAMES FOR GRAPHS
    GORDON, DM
    ROBINSON, RW
    HARARY, F
    DISCRETE MATHEMATICS, 1994, 128 (1-3) : 151 - 163
  • [45] RADIUS, DIAMETER, AND MINIMUM DEGREE
    ERDOS, P
    PACH, J
    POLLACK, R
    TUZA, Z
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (01) : 73 - 79
  • [46] NETWORK STRUCTURE AND MINIMUM DEGREE
    SEIDMAN, SB
    SOCIAL NETWORKS, 1983, 5 (03) : 269 - 287
  • [47] Radius, girth and minimum degree
    Dvorak, Vojtech
    Hintum, Peter
    Shaw, Amy
    Tiba, Marius
    JOURNAL OF GRAPH THEORY, 2022, 100 (03) : 470 - 488
  • [48] On size, radius and minimum degree
    Mukwembi, Simon
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2014, 16 (01): : 1 - 5
  • [49] Girth, minimum degree, and circumference
    Ellingham, MN
    Menser, DK
    JOURNAL OF GRAPH THEORY, 2000, 34 (03) : 221 - 233
  • [50] Factor domination and minimum degree
    Dankelmann, P
    Laskar, RC
    DISCRETE MATHEMATICS, 2003, 262 (1-3) : 113 - 119