Atomic force microscopy of model lipid membranes

被引:49
|
作者
Morandat, Sandrine [1 ]
Azouzi, Slim [1 ,2 ]
Beauvais, Estelle [1 ,2 ]
Mastouri, Amira [1 ,2 ]
El Kirat, Karim [2 ]
机构
[1] Univ Technol Compiegne, CNRS, UMR 6022, Lab Genie Enzymat & Cellulaire, F-60205 Compiegne, France
[2] Univ Technol Compiegne, CNRS, UMR 7338, Lab Biomecan & Bioingn, F-60205 Compiegne, France
关键词
Atomic force microscopy; Force spectroscopy; Supported lipid bilayers; Biomimetic membranes; Nanoscale organization; Nanomechanics; SUPPORTED PHOSPHOLIPID-BILAYERS; SCALE SURFACE-PROPERTIES; ALKALINE-PHOSPHATASE; PHASE-SEPARATION; A(2) HYDROLYSIS; NANOMETER-SCALE; DPPC BILAYERS; PHOSPHATIDYLCHOLINE BILAYERS; UNILAMELLAR VESICLES; DOMAIN FORMATION;
D O I
10.1007/s00216-012-6383-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.
引用
收藏
页码:1445 / 1461
页数:17
相关论文
共 50 条
  • [31] Characterisation of nanofiltration membranes using atomic force microscopy
    Hilal, N
    Al-Zoubi, H
    Darwish, NA
    Mohammad, AW
    [J]. DESALINATION, 2005, 177 (1-3) : 187 - 199
  • [32] Atomic Force Microscopy Studies of Native Photosynthetic Membranes
    Sturgis, James N.
    Tucker, Jaimey D.
    Olsen, John D.
    Hunter, C. Neil
    Niederman, Robert A.
    [J]. BIOCHEMISTRY, 2009, 48 (17) : 3679 - 3698
  • [33] Imaging unfixed cell membranes by atomic force microscopy
    Popescu, AL
    Law, RJ
    Discher, DE
    [J]. PROCEEDINGS OF THE IEEE 28TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 2002, : 169 - 170
  • [34] Investigation of protein clusters in membranes by atomic force microscopy
    Vache, M.
    Janshoff, A.
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S195 - S195
  • [35] Influenza M2 Transmembrane Domain Interacting with Lipid Membranes: An Atomic Force Microscopy and Fluorescence Microscopy Study
    Ho, Chian Sing
    Khakda, Nawal K.
    She, Fengyu
    Cai, Jianfeng
    Pan, Jianjun
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (03) : 254A - 254A
  • [36] Characterization of asymmetric polysulfone membranes by atomic force microscopy
    Nazzarro, MS
    Ramirez-Pastor, AJ
    Riccardo, JL
    Ochoa, NA
    Marchese, J
    [J]. REVISTA MEXICANA DE FISICA, 1998, 44 : 58 - 61
  • [37] A model for friction in atomic force microscopy
    Salapaka, S
    Dahleh, M
    [J]. PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2102 - 2107
  • [38] Atomic force microscopy assisted immobilization of lipid vesicles
    Schönherr, H
    Rozkiewicz, DI
    Vancso, GJ
    [J]. LANGMUIR, 2004, 20 (17) : 7308 - 7312
  • [39] ATOMIC FORCE MICROSCOPY - SEEING MOLECULES OF LIPID AND IMMUNOGLOBULIN
    HANSMA, HG
    WEISENHORN, AL
    EDMUNDSON, AB
    GAUB, HE
    HANSMA, PK
    [J]. CLINICAL CHEMISTRY, 1991, 37 (09) : 1497 - 1501
  • [40] Atomic force microscopy and magnetic force microscopy study of model colloids
    Rasa, M
    Kuipers, BWM
    Philipse, AP
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2002, 250 (02) : 303 - 315