On Anomalous Diffusion of Devices in Molecular Communication Systems

被引:2
|
作者
Chouhan, Lokendra [1 ]
Upadhyay, Prabhat Kumar [1 ]
Sharma, Prabhat Kumar [2 ]
Salhab, Anas M. [3 ,4 ]
机构
[1] Indian Inst Technol Indore, Dept Elect Engn, Indore 453552, India
[2] Visvesvaraya Natl Inst Technol, Dept Elect & Commun Engn, Nagpur 440010, Maharashtra, India
[3] King Fand Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[4] King Fand Univ Petr & Minerals, Interdisciplinary Res Ctr Commun Syst & Sensing, Dhahran 31261, Saudi Arabia
关键词
Timing; Modulation; Stochastic processes; Receivers; Random variables; Molecular communication (telecommunication); Media; Anomalous diffusion; mobile molecular communication; scaled-Brownian motion;
D O I
10.1109/TMBMC.2022.3181506
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A one-dimensional (1-D) anomalous-diffusive molecular communication channel is considered, wherein the devices (transmitter (TX) and receiver (RX)) can move in either direction along the axis. For modeling the anomalous diffusion of information carrying molecules (ICM) as well as that of the TX and RX, the concept of time-scaled Brownian motion is explored. In this context, a novel closed-form expression for the first hitting time density (FHTD) is derived. Further, the derived FHTD is validated through particle-based simulation. For the transmission of binary information, the timing modulation is exploited. Furthermore, the channel is assumed as a binary erasure channel (BEC) and analyzed in terms of achievable information rate (AIR).
引用
收藏
页码:207 / 211
页数:5
相关论文
共 50 条
  • [21] EINSTEIN RELATION IN SYSTEMS WITH ANOMALOUS DIFFUSION
    Gradenigo, G.
    Sarracino, A.
    Villamaina, D.
    Vulpiani, A.
    [J]. ACTA PHYSICA POLONICA B, 2013, 44 (05): : 899 - 912
  • [22] Reaction Spreading in Systems With Anomalous Diffusion
    Cecconi, F.
    Vergni, D.
    Vulpiani, A.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (03) : 107 - 127
  • [23] ANOMALOUS DIFFUSION IN AXISYMMETRIC TOROIDAL SYSTEMS
    LIU, CS
    BAXTER, DC
    THOMPSON, WB
    [J]. PHYSICAL REVIEW LETTERS, 1971, 26 (11) : 621 - &
  • [24] Anomalous Diffusion in Random Dynamical Systems
    Sato, Yuzuru
    Klages, Rainer
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (17)
  • [25] Standard and anomalous diffusion in dynamical systems
    Vergassola, M
    [J]. ANALYSIS AND MODELLING OF DISCRETE DYNAMICAL SYSTEMS, 1998, 1 : 229 - 246
  • [26] Anomalous diffusion and relaxation in macromolecular systems
    Blumen, A
    Gurtovenko, AA
    Jespersen, S
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 305 (1-3) : 71 - 80
  • [27] ANOMALOUS DIFFUSION IN INTERMITTENT CHAOTIC SYSTEMS
    GEISEL, T
    THOMAE, S
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (22) : 1936 - 1939
  • [28] Turing instability of anomalous reaction-anomalous diffusion systems
    Nec, Y.
    Nepomnyashchy, A. A.
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2008, 19 : 329 - 349
  • [29] Revisiting Anomalous Diffusion Due To Molecular Crowding
    Kubota, Yoshihisa
    Waxham, Neal
    [J]. BIOPHYSICAL JOURNAL, 2009, 96 (03) : 300A - 300A
  • [30] Anomalous diffusion of proteins due to molecular crowding
    Banks, DS
    Fradin, C
    [J]. BIOPHYSICAL JOURNAL, 2005, 89 (05) : 2960 - 2971