A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images

被引:52
|
作者
Melgani, F [1 ]
Serpico, SB [1 ]
机构
[1] Univ Genoa, Dept Biophys & Elect Engn, I-16145 Genoa, Italy
关键词
remote-sensing image classification; spatio-temporal context; data fusion; neural networks;
D O I
10.1016/S0167-8655(02)00052-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an iterative statistical approach is proposed to fuse spectral information with spatial and temporal contextual information for the classification of multitemporal, multisensor remote-sensing images. Experimental results show, in terms of classification accuracy, the improvement that can be reached by exploiting the contextual information. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1053 / 1061
页数:9
相关论文
共 50 条
  • [1] Classification of multitemporal remote-sensing images by a fuzzy fusion of spectral and spatio-temporal contextual information
    Melgani, F
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2004, 18 (02) : 143 - 156
  • [2] A fuzzy spatio-temporal contextual classifier for remote sensing images
    Serpico, SB
    Melgani, F
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2438 - 2440
  • [3] An Integrated Framework for the Spatio-Temporal-Spectral Fusion of Remote Sensing Images
    Shen, Huanfeng
    Meng, Xiangchao
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 7135 - 7148
  • [4] A UNIFIED FRAMEWORK FOR SPATIO-TEMPORAL-SPECTRAL FUSION OF REMOTE SENSING IMAGES
    Meng, Xiangchao
    Shen, Huanfeng
    Zhang, Liangpei
    Yuan, Qiangqiang
    Li, Huifang
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2584 - 2587
  • [5] Evaluation of spatio-temporal variations in chlorophyll-a in Lake Naivasha, Kenya: remote-sensing approach
    Ndungu, Jane
    Monger, Bruce C.
    Augustijn, Denie C. M.
    Hulscher, Suzanne J. M. H.
    Kitaka, Nzula
    Mathooko, Jude M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (22) : 8142 - 8155
  • [6] Spatio-temporal fusion methods for spectral remote sensing: a comprehensive technical review and comparative analysis
    Swain, Ratnakar
    Paul, Ananya
    Behera, Mukunda Dev
    [J]. TROPICAL ECOLOGY, 2024, 65 (03) : 356 - 375
  • [7] POST-CLASSIFICATION APPROACH BASED ON GEOSTATISTICS TO REMOTE SENSING IMAGES : SPECTRAL AND SPATIAL INFORMATION FUSION
    Yao, N.
    Zhang, J. X.
    Lin, Z. J.
    Ren, C. F.
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 247 - 252
  • [8] A spatial-spectral kernel-based approach for the classification of remote-sensing images
    Fauvel, M.
    Chanussot, J.
    Benediktsson, J. A.
    [J]. PATTERN RECOGNITION, 2012, 45 (01) : 381 - 392
  • [9] Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets
    Katzfuss, Matthias
    Cressie, Noel
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (04) : 430 - 446
  • [10] A NOISE PROOF STRATEGY FOR SPATIO-TEMPORAL FUSION OF REMOTE SENSING IMAGERY
    Li, Yunfei
    Li, Jun
    Plaza, Antonio
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 895 - 898