A UNIFIED FRAMEWORK FOR SPATIO-TEMPORAL-SPECTRAL FUSION OF REMOTE SENSING IMAGES

被引:0
|
作者
Meng, Xiangchao [1 ]
Shen, Huanfeng [1 ]
Zhang, Liangpei [2 ]
Yuan, Qiangqiang [3 ]
Li, Huifang [1 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
[3] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Peoples R China
关键词
unified framework; image fusion; spatio-temporal-spectral resolutions; maximum a posteriori (MAP); remote sensing; RESOLUTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a unified framework for the spatio-temporal-spectral fusion of remote sensing images is proposed. The relationships between the observed images and the desired image are first established based on general image observation models. Maximum a posteriori (MAP) theory is then employed to formulate the unified fusion framework. The proposed method is able to fuse images from an arbitrary number of optical sensors with different spatial, temporal, and spectral resolutions. The experimental results verify the effectiveness of the proposed method.
引用
收藏
页码:2584 / 2587
页数:4
相关论文
共 50 条
  • [1] An Integrated Framework for the Spatio-Temporal-Spectral Fusion of Remote Sensing Images
    Shen, Huanfeng
    Meng, Xiangchao
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 7135 - 7148
  • [2] Integrated fusion framework based on semicoupled sparse tensor factorization for spatio-temporal-spectral fusion of remote sensing images
    Peng, Yidong
    Li, Weisheng
    Luo, Xiaobo
    Du, Jiao
    Gan, Yi
    Gao, Xinbo
    [J]. INFORMATION FUSION, 2021, 65 : 21 - 36
  • [3] Dual-Task Interactive Learning for Unsupervised Spatio-Temporal-Spectral Fusion of Remote Sensing Images
    Liu, Qiang
    Chen, Xu
    Meng, Xiangchao
    Chen, Hangwei
    Shao, Feng
    Sun, Weiwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Deep-Learning-Based Spatio-Temporal-Spectral Integrated Fusion of Heterogeneous Remote Sensing Images
    Jiang, Menghui
    Shen, Huanfeng
    Li, Jie
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Spatio-temporal-spectral observation model for urban remote sensing
    Shao, Zhenfeng
    Wu, Wenfu
    Li, Deren
    [J]. GEO-SPATIAL INFORMATION SCIENCE, 2021, 24 (03) : 372 - 386
  • [6] Spatio-temporal-spectral observation model for urban remote sensing (Feb, 10.1080/10095020.2020.1864232, 2021)
    Shao, Zhenfeng
    Wu, Wenfu
    Lia, Deren
    [J]. GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (01) : 258 - 258
  • [7] Spatio-Temporal-Spectral Collaborative Learning for Spatio-Temporal Fusion with Land Cover Changes
    Meng, Xiangchao
    Liu, Qiang
    Shao, Feng
    Li, Shutao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Generalized spatio-temporal-spectral integrated fusion for soil moisture downscaling
    Jiang, Menghui
    Shen, Huanfeng
    Li, Jie
    Zhang, Liangpei
    [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 218 : 70 - 86
  • [9] A UNIFIED SPATIAL-TEMPORAL-SPECTRAL LEARNING FRAMEWORK FOR RECONSTRUCTING MISSING DATA IN REMOTE SENSING IMAGES
    Zhang, Qiang
    Yuan, Qiangqiang
    Shen, Huanfeng
    Zhang, Liangpei
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4981 - 4984
  • [10] Review of the detection and attribution of multi-type forest disturbances using an ensemble of spatio-temporal-spectral information from remote sensing images
    Wu, Ling
    Liu, Xiangnan
    Liu, Meiling
    Zhang, Tingwei
    Yang, Baowen
    Xu, Yuqi
    [J]. National Remote Sensing Bulletin, 2024, 28 (03) : 558 - 575