Pseudo-linear scale-space theory

被引:23
|
作者
Florack, L
Maas, R
Niessen, W
机构
[1] Univ Utrecht, Dept Comp Sci, Image Sci Inst, NL-3584 CH Utrecht, Netherlands
[2] Univ Utrecht Hosp, Image Sci Inst, NL-3584 CX Utrecht, Netherlands
关键词
fuzzy dilation; erosion; linear scale-space; morphological scale-space; reaction-diffusion;
D O I
10.1023/A:1008026217765
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It has been observed that linear, Gaussian scale-space, and nonlinear, morphological erosion and dilation scale-spaces generated by a quadratic structuring function have a lot in common. Indeed, far-reaching analogies have been reported, which seems to suggest the existence of an underlying isomorphism. However, an actual mapping appears to be missing. In the present work a one-parameter isomorphism is constructed in closed-form, which encompasses linear and both types of morphological scale-spaces as (non-uniform) limiting cases. The unfolding of the one-parameter family provides a means to transfer known results from one domain to the other. Moreover, for any fixed and non-degenerate parameter value one obtains a novel type of "pseudo-linear" multiscale representation that is, in a precise way, "in-between" the familiar ones. This is of interest in its own right, as it enables one to balance pros and cons of linear versus morphological scale-space representations in any particular situation.
引用
收藏
页码:247 / 259
页数:13
相关论文
共 50 条
  • [1] Pseudo-Linear Scale-Space Theory
    Luc Florack
    Robert Maas
    Wiro Niessen
    [J]. International Journal of Computer Vision, 1999, 31 : 247 - 259
  • [2] The theory of pseudo-linear operators
    Bede, Barnabas
    O'Regan, Donal
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 38 : 19 - 26
  • [3] Linear scale-space theory from physical principles
    Salden, AH
    Romeny, BMT
    Viergever, MA
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1998, 9 (02) : 103 - 139
  • [4] Linear Scale-Space Theory from Physical Principles
    Alfons H. Salden
    Bart M. ter Haar Romeny
    Max A. Viergever
    [J]. Journal of Mathematical Imaging and Vision, 1998, 9 : 103 - 139
  • [5] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Tony Lindeberg
    [J]. Journal of Mathematical Imaging and Vision, 2011, 40 : 36 - 81
  • [6] LINEAR AND PSEUDO-LINEAR OPERATORS OF A COMPLEX VECTOR SPACE
    HEUVERS, KJ
    [J]. TENSOR, 1971, 22 (02): : 174 - &
  • [7] LINEAR AND PSEUDO-LINEAR FUNCTIONALS OF A COMPLEX VECTOR SPACE
    HEUVERS, KJ
    [J]. TENSOR, 1971, 22 (02): : 148 - &
  • [8] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Lindeberg, Tony
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) : 36 - 81
  • [9] On the Axiomatization of Scale-Space Theory
    Anguelov, R.
    Fabris-Rotelli, I.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2012, 1487 : 159 - 167
  • [10] Applications of scale-space theory
    Romeny, BT
    [J]. GAUSSIAN SCALE-SPACE THEORY, 1997, 8 : 3 - 19