On the Axiomatization of Scale-Space Theory

被引:0
|
作者
Anguelov, R. [1 ]
Fabris-Rotelli, I. [2 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
[2] Univ Pretoria, Dept Stat, ZA-0002 Pretoria, South Africa
关键词
Scale-space; axiomatization; image processing; LULU; discrete pulse transform; EDGE;
D O I
10.1063/1.4758954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Scale-spaces are a common method for analysis of images. It involves an operator depending on a parameter, called a scale, which acts in some space of real functions. Many different scale-spaces have been defined and used in practice. The most popular example is the Gaussian Scale-Space where the operator is defined as a convolution integral involving the Gaussian distribution function with the standard variation being the scale parameter. There have also been many attempts for axiomatization of scale-space theory. The novelty of our approach is that it does not assume integral representation of the scale-space operator. While the new theory is applicable to, and in fact represents and abstraction of the properties of all existing operators, most importantly that of causality, it uses as an essential example the operator and the respective scale-space provided by the Discrete Pulse Transform.
引用
收藏
页码:159 / 167
页数:9
相关论文
共 50 条
  • [1] Applications of scale-space theory
    Romeny, BT
    [J]. GAUSSIAN SCALE-SPACE THEORY, 1997, 8 : 3 - 19
  • [2] Generalized Axiomatic Scale-Space Theory
    Lindeberg, Tony
    [J]. ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 178, 2013, 178 : 1 - +
  • [3] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Tony Lindeberg
    [J]. Journal of Mathematical Imaging and Vision, 2011, 40 : 36 - 81
  • [4] Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
    Lindeberg, Tony
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (01) : 36 - 81
  • [5] Pseudo-Linear Scale-Space Theory
    Luc Florack
    Robert Maas
    Wiro Niessen
    [J]. International Journal of Computer Vision, 1999, 31 : 247 - 259
  • [6] Morphological scale-space theory for segmentation problems
    Teixeira, MD
    Leite, NJ
    [J]. PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 364 - 368
  • [7] Pseudo-linear scale-space theory
    Florack, L
    Maas, R
    Niessen, W
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1999, 31 (2-3) : 247 - 259
  • [8] Linear scale-space theory from physical principles
    Salden, AH
    Romeny, BMT
    Viergever, MA
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1998, 9 (02) : 103 - 139
  • [9] Linear Scale-Space Theory from Physical Principles
    Alfons H. Salden
    Bart M. ter Haar Romeny
    Max A. Viergever
    [J]. Journal of Mathematical Imaging and Vision, 1998, 9 : 103 - 139
  • [10] From Gaussian scale-space to B-spline scale-space
    Wang, YP
    Lee, SL
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3441 - 3444