ERROR ESTIMATES FOR A NUMERICAL METHOD FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM ON SUFFICIENTLY SMOOTH DOMAINS

被引:14
|
作者
Feireisl, Eduard [1 ,2 ]
Hosek, Radim [1 ,2 ]
Maltese, David [1 ,2 ]
Novotny, Antonin [1 ,2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
[2] Univ Toulon & Var, Inst Math Toulon, EA2134, BP 20132, F-83957 La Garde, France
基金
欧洲研究理事会;
关键词
Navier-Stokes system; finite element numerical method; finite volume numerical method; error estimates; FINITE-ELEMENT-METHOD; SUITABLE WEAK SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; VOLUME SCHEMES; EQUATIONS; SOLVABILITY;
D O I
10.1051/m2an/2016022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive an a priori error estimate for the numerical solution obtained by time and space discretization by the finite volume/finite element method of the barotropic Navier-Stokes equations. The numerical solution on a convenient polyhedral domain approximating a sufficiently smooth bounded domain is compared with an exact solution of the barotropic Navier-Stokes equations with a bounded density. The result is unconditional in the sense that there are no assumed bounds on the numerical solution. It is obtained by the combination of discrete relative energy inequality derived in [T. Gallouet, R. Herbin, D. Maltese and A. Novotny, IMA J. Numer. Anal. 36 (2016) 543-592.] and several recent results in the theory of compressible Navier-Stokes equations concerning blow up criterion established in [Y. Sun, C. Wang and Z. Zhang, J. Math. Pures Appl. 95 (2011) 36-47] and weak strong uniqueness principle established in [E. Feireisl, B.J. Jin and A. Novotny, J. Math. Fluid Mech. 14 (2012) 717-730].
引用
收藏
页码:279 / 319
页数:41
相关论文
共 50 条
  • [1] Convergence of a numerical method for the compressible Navier-Stokes system on general domains
    Feireisl, Eduard
    Karper, Trygve
    Michalek, Martin
    NUMERISCHE MATHEMATIK, 2016, 134 (04) : 667 - 704
  • [2] Error estimates for a numerical approximation to the compressible barotropic Navier-Stokes equations
    Gallouet, Thierry
    Herbin, Raphaele
    Maltese, David
    Novotny, Antonin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 543 - 592
  • [3] AN ERROR ESTIMATE FOR A NUMERICAL SCHEME FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM
    Jovanovic, Vladimir
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2007, 30 : 263 - 275
  • [4] Convergence and error estimates of a penalization finite volume method for the compressible Navier-Stokes system
    Lukacova-Medvidova, Maria
    She, Bangwei
    Yuan, Yuhuan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [5] A Numerical Method for Compressible Navier-Stokes Equations
    HUANG AIXIANG(Xi'an Jiaotong University
    Xi'an
    CHINA)
    工程数学学报, 1990, (02) : 58 - 76+154
  • [6] On the solvability of the compressible Navier-Stokes system in bounded domains
    Danchin, Raphael
    NONLINEARITY, 2010, 23 (02) : 383 - 407
  • [7] The evolution compressible Navier-Stokes system on polygonal domains
    Kweon, Jae Ryong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) : 487 - 520
  • [8] Convergence of a numerical method for the compressible Navier–Stokes system on general domains
    Eduard Feireisl
    Trygve Karper
    Martin Michálek
    Numerische Mathematik, 2016, 134 : 667 - 704
  • [9] Improved error estimates for the finite volume and the MAC schemes for the compressible Navier-Stokes system
    Feireisl, Eduard
    Lukacova-Medvidova, Maria
    She, Bangwei
    NUMERISCHE MATHEMATIK, 2023, 153 (2-3) : 493 - 529
  • [10] Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations
    Gallouet, Thierry
    Maltese, David
    Novotny, Antonin
    NUMERISCHE MATHEMATIK, 2019, 141 (02) : 495 - 567