Comparison among different algorithms in classifying explosives using OFETs

被引:11
|
作者
Surya, Sandeep G. [1 ,2 ]
Dudhe, Ravishankar S. [2 ,3 ]
Saluru, Deepak [2 ,4 ]
Koora, Bharath Kumar [2 ,5 ]
Sharma, Dinesh K. [1 ,2 ]
Rao, V. Ramgopal [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Ctr Excellence Nanoelect, Bombay 400076, Maharashtra, India
[3] Mumbai Univ, Lokmanya Tilak Coll Engn, Dept Elect & Telecommun, Bombay 400709, Maharashtra, India
[4] Ohio State Univ, Dept Aeronaut & Astronaut Engn, Columbus, OH 43210 USA
[5] Birla Inst Technol & Sci, Dept Elect & Elect Engn, Pilani 333031, Rajasthan, India
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2013年 / 176卷
关键词
OFET; Explosives; NBS; LWL; SMO; J48 decision tree; GAS SENSOR; RECOGNITION; VAPOR; SYSTEM; ARRAY;
D O I
10.1016/j.snb.2012.08.076
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Vapour phase detection of explosives using pattern recognition approaches is a very important area of research worldwide. This paper elaborates on the comparison between different algorithms in classifying empirical multiparametric data that are obtained from the explosive vapor sensors based on organic field effect transistors (OFETs). We address the problem of classification by means of statistical comparison among algorithms such as NaiveBayes (NBS), locally weighted learning (LWL), sequential minimal optimization (SMO) and J48 decision tree on data acquired from OFETs. This analysis helps in understanding the nature of data obtained from experiments and in making efficient estimators for the detection of explosives. The correctly classified instances for predicting tested samples using LWL, NBS, SMO and J48 decision tree are 72%, 73%, 80% and 90%, respectively. The future development of standoff explosive detectors will be benefited greatly by a proper choice of these classification approaches. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 50 条
  • [41] A comparison of data mining algorithms using different drug classifications for signal identification
    Dang, Vivian T.
    Kortepeter, Cindy M.
    Munoz, Monica A.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2021, 30 : 120 - 121
  • [42] Comparison of BiClusO with Five Different Biclustering Algorithms Using Biological and Synthetic Data
    Karim, Mohammad Bozlul
    Kanaya, Shigehiko
    Altaf-Ul Amin, Md
    COMPLEX NETWORKS AND THEIR APPLICATIONS VII, VOL 2, 2019, 813 : 575 - 585
  • [43] An Empirical Comparison of Fake News Detection using different Machine Learning Algorithms
    Albahr, Abdulaziz
    Albahar, Marwan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 146 - 152
  • [44] Comparison of active learning algorithms in classifying head computed tomography reports using bidirectional encoder representations from transformers
    Wataya, Tomohiro
    Miura, Azusa
    Sakisuka, Takahisa
    Fujiwara, Masahiro
    Tanaka, Hisashi
    Hiraoka, Yu
    Sato, Junya
    Tomiyama, Miyuki
    Nishigaki, Daiki
    Kita, Kosuke
    Suzuki, Yuki
    Kido, Shoji
    Tomiyama, Noriyuki
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2025, : 687 - 701
  • [45] Classifying Remote Sensing Image Using Gene Expression Programming Algorithms
    Liu, Mengwei
    Zeng, Guanghong
    Yuan, Guohui
    Pei, Yabo
    Yang, Zili
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 423 - 427
  • [46] OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY ASSESSMENT OF THE DIABETIC MACULA A Comparison Study Among Different Algorithms
    Borrelli, Enrico
    Sacconi, Riccardo
    Parravano, Mariacristina
    Costanzo, Eliana
    Querques, Lea
    Battista, Marco
    Grosso, Domenico
    Giorno, Paola
    Bandello, Francesco
    Querques, Giuseppe
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2021, 41 (09): : 1799 - 1808
  • [47] SAMPLING DESIGN FOR CLASSIFYING CONTAMINANT LEVEL USING ANNEALING SEARCH ALGORITHMS
    CHRISTAKOS, G
    KILLAM, BR
    WATER RESOURCES RESEARCH, 1993, 29 (12) : 4063 - 4076
  • [48] Different quantification algorithms may lead to different results: a comparison using proton MRS lipid signals
    Mosconi, E.
    Sima, D. M.
    Garcia, M. I. Osorio
    Fontanella, M.
    Fiorini, S.
    Van Huffel, S.
    Marzola, P.
    NMR IN BIOMEDICINE, 2014, 27 (04) : 431 - 443
  • [49] Classifying tumor brain images using parallel deep learning algorithms
    Kazemi, Ahmad
    Shiri, Mohammad Ebrahim
    Sheikhahmadi, Amir
    Khodamoradi, Mohamad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [50] Acoustic Methodologies for Classifying Gender and Emotions using Machine Learning Algorithms
    Aggarwal, Gaurav
    Vig, Rekha
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 672 - 677