Sets Computing the Symmetric Tensor Rank

被引:12
|
作者
Ballico, Edoardo [1 ]
Chiantini, Luca [2 ]
机构
[1] Univ Trento, Dipartimento Matemat, I-38123 Povo, TN, Italy
[2] Univ Siena, Dipartimento Sci Matemat & Informat R Magari, I-53100 Siena, Italy
关键词
Symmetric tensor rank; Veronese embedding;
D O I
10.1007/s00009-012-0214-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let denote the degree d Veronese embedding of . For any , the symmetric tensor rank sr(P) is the minimal cardinality of a set spanning P. Let be the set of all such that computes sr(P). Here we classify all such that sr(P) < 3d/2 and sr(P) is computed by at least two subsets of . For such tensors , we prove that has no isolated points.
引用
收藏
页码:643 / 654
页数:12
相关论文
共 50 条
  • [31] Canonical quantization of massive symmetric rank-two tensor in string theory
    Park, Hayun
    Lee, Taejin
    NUCLEAR PHYSICS B, 2020, 954
  • [32] Nonconvex Low-Rank Symmetric Tensor Completion from Noisy Data
    Cai, Changxiao
    Li, Gen
    Poor, H. Vincent
    Chen, Yuxin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [33] LOW-RANK TENSOR METHODS WITH SUBSPACE CORRECTION FOR SYMMETRIC EIGENVALUE PROBLEMS
    Kressner, Daniel
    Steinlechner, Michael
    Uschmajew, Andre
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : A2346 - A2368
  • [34] The 1/N Expansion of the Symmetric Traceless and the Antisymmetric Tensor Models in Rank Three
    Benedetti, Dario
    Carrozza, Sylvain
    Gurau, Razvan
    Kolanowski, Maciej
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) : 55 - 97
  • [35] Computing symmetric rank-revealing decompositions via triangular factorization
    Hansen, PC
    Yalamov, PY
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (02) : 443 - 458
  • [36] Computing Nash Equilibria for Multiplayer Symmetric Games Based on Tensor Form
    Liu, Qilong
    Liao, Qingshui
    MATHEMATICS, 2023, 11 (10)
  • [37] Tensor surgery and tensor rank
    Christandl, Matthias
    Zuiddam, Jeroen
    COMPUTATIONAL COMPLEXITY, 2019, 28 (01) : 27 - 56
  • [38] Tensor surgery and tensor rank
    Matthias Christandl
    Jeroen Zuiddam
    computational complexity, 2019, 28 : 27 - 56
  • [39] Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank (2, 2) into two-dimensional phenomenologically symmetric geometries of two sets of rank (3, 2)
    Kyrov, V. A.
    Mikhailichenko, G. G.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2018, 28 (03): : 305 - 327
  • [40] Low Tucker rank tensor completion using a symmetric block coordinate descent method
    Yu, Quan
    Zhang, Xinzhen
    Chen, Yannan
    Qi, Liqun
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (03)