DYNAMIC MODELING OF NUCLEAR HYDROGEN PRODUCTION USING METHANE STEAM REFORMING

被引:0
|
作者
Li, Junyi [1 ]
Dong, Zhe [1 ]
Li, Bowen [1 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Methane steam reforming (MSR) technology is one of the promising methods of hydrogen production and already available at an industrial scale, in which steam is added to methane to generate hydrogen. MSR carries out at a temperature of 500 degrees C when catalysts and Pd-based membrane reactors are used. The nuclear steam supply system (NSSS) of a modular high-temperature gas-cooled reactor (MHTGR) can provide high-quality steam of around 570 degrees C, which is an excellent heat source for MSR. MHTGR is a typical small modular reactor (SMR), of which the coolant is helium, and the moderator and structural material are graphite. The number of the MHTGR can be decided based on the thermal power required for MSR and electricity generation. In this paper, a six-modular MHTGR nuclear power plant with 1500MW thermal power coupled with the MSR process is designed. The hydrogen production rate is 9.72 tons per hour. The dynamic modeling is based on conservation laws of mass and energy. To examine the dynamic characteristics of the nuclear hydrogen production plant, open-loop responses of the model under different disturbances are presented.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Steam reforming of glycerol for hydrogen production: Modeling study
    Silva, Joel M.
    Soria, M. A.
    Madeira, Luis M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (03) : 1408 - 1418
  • [22] Numerical analysis of hydrogen production by methanol and methane steam reforming using compact reactors
    Bayramoglu, Kubilay
    Yilmaz, Semih
    Coban, Mustafa Turhan
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2025, 58
  • [23] Hydrogen production by methane steam reforming using metallic nickel hollow fiber membranes
    Wang, Mingming
    Tan, Xiaoyao
    Motuzas, Julius
    Li, Jiaquan
    Liu, Shaomin
    JOURNAL OF MEMBRANE SCIENCE, 2021, 620
  • [24] Hydrogen Production by Steam Reforming Using Biomass
    Stevanovic, Dragan M.
    Kutter, Christian W.
    Philippi, Tarek R.
    Voelkl, Florian H.
    Buradkar, Aditya M.
    JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES, 2024, 12 (02):
  • [25] Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process
    Mondal, Kartick C.
    Chandran, S. Ramesh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (18) : 9670 - 9674
  • [26] Simulation modelling of hydrogen production from steam reforming of methane and biogas
    Kumar, Ravindra
    Kumar, Anil
    Pal, Amit
    FUEL, 2024, 362
  • [27] Hydrogen production via steam reforming of methane with nonthermal plasma.
    Kabashima, H
    Futamura, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U571 - U571
  • [28] Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells
    Roh, Hyun-Seog
    Jun, Ki-Won
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2009, 30 (01): : 153 - 156
  • [29] Demonstration plant for distributed production of hydrogen from steam reforming of methane
    Seris, ELC
    Abramowitz, G
    Johnston, AM
    Haynes, BS
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2005, 83 (A6): : 619 - 625
  • [30] Steam Methane Reforming System for Hydrogen Production: Advanced Exergetic Analysis
    Boyano, Alicia
    Blanco-Marigorta, Ana-Maria
    Morosuk, Tatiana
    Tsatsaronis, George
    INTERNATIONAL JOURNAL OF THERMODYNAMICS, 2012, 15 (01) : 1 - 9