Asymptotically Mean Value Harmonic Functions in Doubling Metric Measure Spaces

被引:3
|
作者
Adamowicz, Tomasz [1 ]
Kijowski, Antoni [2 ]
Soultanis, Elefterios [3 ]
机构
[1] Polish Acad Sci, Inst Math, Warsaw, Poland
[2] GIST, Anal Metr Spaces Unit, Nago, Okinawa, Japan
[3] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands
来源
关键词
Asymptotic mean value property; elliptic PDEs; harmonic functions; Gromov-Hausdorff convergence; Holder continuity; mean value property; Sobolev spaces; weighted Euclidean spaces;
D O I
10.1515/agms-2022-0143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds and in doubling metric measure spaces. We show that the strongly amv-harmonic functions are Holder continuous for any exponent below one. More generally, we define the class of functions with finite amv-norm and show that functions in this class belong to a fractional Hajlasz-Sobolev space and their blow-ups satisfy the mean-value property. Furthermore, in the weighted Euclidean setting we find an elliptic PDE satisfied by amv-harmonic functions.
引用
收藏
页码:344 / 372
页数:29
相关论文
共 50 条
  • [1] CHARACTERIZATION OF MEAN VALUE HARMONIC FUNCTIONS ON NORM INDUCED METRIC MEASURE SPACES WITH WEIGHTED LEBESGUE MEASURE
    Kijowski, Antoni
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [2] Fractional maximal functions and mean oscillation on bounded doubling metric measure spaces
    Gibara, Ryan
    Kline, Josh
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (10)
  • [3] Harmonic functions on metric measure spaces
    Tomasz Adamowicz
    Michał Gaczkowski
    Przemysław Górka
    Revista Matemática Complutense, 2019, 32 : 141 - 186
  • [4] Harmonic functions on metric measure spaces
    Adamowicz, Tomasz
    Gaczkowski, Michal
    Gorka, Przemyslaw
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 141 - 186
  • [5] Harmonic Functions on Metric Measure Spaces: Convergence and Compactness
    Michał Gaczkowski
    Przemysław Górka
    Potential Analysis, 2009, 31 : 203 - 214
  • [6] Harmonic Functions on Metric Measure Spaces: Convergence and Compactness
    Gaczkowski, Michal
    Gorka, Przemyslaw
    POTENTIAL ANALYSIS, 2009, 31 (03) : 203 - 214
  • [7] Asymptotic mean value Laplacian in metric measure spaces
    Minne, Andreas
    Tewodrose, David
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [8] Asymptotically Mean Value Harmonic Functions in Subriemannian and RCD Settings
    Adamowicz, Tomasz
    Kijowski, Antoni
    Soultanis, Elefterios
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [9] Asymptotically Mean Value Harmonic Functions in Subriemannian and RCD Settings
    Tomasz Adamowicz
    Antoni Kijowski
    Elefterios Soultanis
    The Journal of Geometric Analysis, 2023, 33
  • [10] HARMONIC FUNCTIONS AND END NUMBERS ON SMOOTH METRIC MEASURE SPACES
    Fu, Xuenan
    Wu, Jia-yong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 62 (01) : 1 - 31