An Efficient Strategy for Blood Diseases Detection Based on Grey Wolf Optimization as Feature Selection and Machine Learning Techniques

被引:16
|
作者
Sallam, Nada M. [1 ,2 ]
Saleh, Ahmed, I [2 ]
Ali, H. Arafat [2 ,3 ]
Abdelsalam, Mohamed M. [2 ]
机构
[1] Nile Higher Inst Commercial Sci & Comp Technol, Mansoura 35511, Egypt
[2] Mansoura Univ, Fac Engn, Comp Engn & Control Syst Dept, Mansoura 35511, Egypt
[3] Delta Univ Sci & Technol, Fac Artificial Intelligence, Mansoura 35511, Egypt
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 21期
关键词
grey wolf optimization; acute lymphoblastic leukemia; support vector machine; random forest; naive bayes; K nearest neighbor; CANCER;
D O I
10.3390/app122110760
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Acute Lymphoblastic Leukemia (ALL) is a cancer that infects the blood cells causing the development of lymphocytes in large numbers. Diagnostic tests are costly and very time-consuming. It is important to diagnose ALL using Peripheral Blood Smear (PBS) images, especially in the initial screening cases. Several issues affect the examination process such as diagnostic error, symptoms, and nonspecific nature signs of ALL. Therefore, the objective of this study is to enforce machine-learning classifiers in the detection of Acute Lymphoblastic Leukemia as benign or malignant after using the grey wolf optimization algorithm in feature selection. The images have been enhanced by using an adaptive threshold to improve the contrast and remove errors. The model is based on grey wolf optimization technology which has been developed for feature reduction. Finally, acute lymphoblastic leukemia has been classified into benign and malignant using K-nearest neighbors (KNN), support vector machine (SVM), naive Bayes (NB), and random forest (RF) classifiers. The best accuracy, sensitivity, and specificity of this model were 99.69%, 99.5%, and 99%, respectively, after using the grey wolf optimization algorithm in feature selection. To ensure the effectiveness of the proposed model, comparative results with other classification techniques have been included.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Feature selection for image steganalysis using levy flight-based grey wolf optimization
    Yadunath Pathak
    K. V. Arya
    Shailendra Tiwari
    Multimedia Tools and Applications, 2019, 78 : 1473 - 1494
  • [42] A feature selection method based on the Golden Jackal-Grey Wolf Hybrid Optimization Algorithm
    Liu, Guangwei
    Guo, Zhiqing
    Liu, Wei
    Jiang, Feng
    Fu, Ensan
    PLOS ONE, 2024, 19 (01):
  • [43] Swarm Intelligence-Based Feature Selection: An Improved Binary Grey Wolf Optimization Method
    Li, Wenqu
    Kang, Hui
    Feng, Tie
    Li, Jiahui
    Yue, Zhiru
    Sun, Geng
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, 2021, 12817 : 98 - 110
  • [44] Feature selection for image steganalysis using levy flight-based grey wolf optimization
    Pathak, Yadunath
    Arya, K. V.
    Tiwari, Shailendra
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (02) : 1473 - 1494
  • [45] Binary grey wolf optimizer with a novel population adaptation strategy for feature selection
    Wang, Dazhi
    Ji, Yanjing
    Wang, Hongfeng
    Huang, Min
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (17): : 2313 - 2331
  • [46] Network Intrusion Detection Through Machine Learning With Efficient Feature Selection
    Desai, Rohan
    Gopalakrishnan, Venkatesh Tiruchirai
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [47] Scalable detection of botnets based on DGA Efficient feature discovery process in machine learning techniques
    Zago, Mattia
    Gil Perez, Manuel
    Martinez Perez, Gregorio
    SOFT COMPUTING, 2020, 24 (08) : 5517 - 5537
  • [48] Feature Selection Approach for Phishing Detection Based on Machine Learning
    Wei, Yi
    Sekiya, Yuji
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON APPLIED CYBER SECURITY (ACS) 2021, 2022, 378 : 61 - 70
  • [49] Phishing detection based on machine learning and feature selection methods
    Almseidin M.
    Abu Zuraiq A.M.
    Al-kasassbeh M.
    Alnidami N.
    International Journal of Interactive Mobile Technologies, 2019, 13 (12) : 71 - 183
  • [50] Obsolescence Prediction based on Joint Feature Selection and Machine Learning Techniques
    Trabelsi, Imen
    Zeddini, Besma
    Zolghadri, Marc
    Barkallah, Maher
    Haddar, Mohamed
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 787 - 794