Given two 2-regular graphs F1 and F2, both of order n, the Hamilton-Waterloo Problem for F1 and F2 asks for a factorization of the complete graph Kn into a1 copies of F1, a2 copies of F2, and a 1-factor if n is even, for all nonnegative integers a1 and a2 satisfying a1+a2=?n-12?. We settle the Hamilton-Waterloo Problem for all bipartite 2-regular graphs F1 and F2 where F1 can be obtained from F2 by replacing each cycle with a bipartite 2-regular graph of the same order.
机构:
Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USAMichigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
Keranen, Melissa S.
Pastine, Adrian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl San Luis, Inst Matemat Aplicada San Luis IMASL, CONICET, Ejercito Andes 950,D5700HHW, San Luis, ArgentinaMichigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA