On the Hamilton-Waterloo Problem for Bipartite 2-Factors

被引:21
|
作者
Bryant, Darryn [1 ]
Danziger, Peter [2 ]
Dean, Matthew [1 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Ryerson Univ, Dept Math, Toronto, ON M5B 2K3, Canada
基金
澳大利亚研究理事会;
关键词
graph decomposition; 2-factorization; graph factorization; Hamilton-Waterloo problem; OBERWOLFACH-PROBLEM; CYCLIC SOLUTIONS; 2-FACTORIZATIONS; GRAPHS; FACTORIZATIONS; DECOMPOSITION;
D O I
10.1002/jcd.21312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two 2-regular graphs F1 and F2, both of order n, the Hamilton-Waterloo Problem for F1 and F2 asks for a factorization of the complete graph Kn into a1 copies of F1, a2 copies of F2, and a 1-factor if n is even, for all nonnegative integers a1 and a2 satisfying a1+a2=?n-12?. We settle the Hamilton-Waterloo Problem for all bipartite 2-regular graphs F1 and F2 where F1 can be obtained from F2 by replacing each cycle with a bipartite 2-regular graph of the same order.
引用
收藏
页码:60 / 80
页数:21
相关论文
共 50 条