On the Hamilton-Waterloo Problem for Bipartite 2-Factors

被引:21
|
作者
Bryant, Darryn [1 ]
Danziger, Peter [2 ]
Dean, Matthew [1 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Ryerson Univ, Dept Math, Toronto, ON M5B 2K3, Canada
基金
澳大利亚研究理事会;
关键词
graph decomposition; 2-factorization; graph factorization; Hamilton-Waterloo problem; OBERWOLFACH-PROBLEM; CYCLIC SOLUTIONS; 2-FACTORIZATIONS; GRAPHS; FACTORIZATIONS; DECOMPOSITION;
D O I
10.1002/jcd.21312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two 2-regular graphs F1 and F2, both of order n, the Hamilton-Waterloo Problem for F1 and F2 asks for a factorization of the complete graph Kn into a1 copies of F1, a2 copies of F2, and a 1-factor if n is even, for all nonnegative integers a1 and a2 satisfying a1+a2=?n-12?. We settle the Hamilton-Waterloo Problem for all bipartite 2-regular graphs F1 and F2 where F1 can be obtained from F2 by replacing each cycle with a bipartite 2-regular graph of the same order.
引用
收藏
页码:60 / 80
页数:21
相关论文
共 50 条
  • [1] On the Hamilton-Waterloo problem
    Adams, P
    Billington, EJ
    Bryant, DE
    El-Zanati, SI
    GRAPHS AND COMBINATORICS, 2002, 18 (01) : 31 - 51
  • [2] On the Hamilton-Waterloo Problem
    Peter Adams
    Elizabeth J. Billington
    Darryn E. Bryant
    Saad I. El-Zanati
    Graphs and Combinatorics, 2002, 18 : 31 - 51
  • [3] The Hamilton-Waterloo Problem for Hamilton Cycles and Triangle-Factors
    Lei, Hongchuan
    Shen, Hao
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (07) : 305 - 316
  • [4] The Hamilton-Waterloo problem for two even cycles factors
    Fu, Hung-Lin
    Huang, Kuo-Ching
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (04): : 933 - 940
  • [5] The Hamilton-Waterloo problem: the case of Hamilton cycles and triangle-factors
    Horak, P
    Nedela, R
    Rosa, A
    DISCRETE MATHEMATICS, 2004, 284 (1-3) : 181 - 188
  • [6] The Hamilton-Waterloo Problem with C4 and Cm factors
    Odabsi, Ugur
    Ozkan, Sibel
    DISCRETE MATHEMATICS, 2016, 339 (01) : 263 - 269
  • [7] On the Hamilton-Waterloo Problem with Odd Orders
    Burgess, A. C.
    Danziger, P.
    Traetta, T.
    JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (06) : 258 - 287
  • [8] The Hamilton-Waterloo Problem for Triangle-Factors and Heptagon-Factors
    Lei, Hongchuan
    Fu, Hung-Lin
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 271 - 278
  • [9] The Hamilton-Waterloo problem for Hamilton cycles and C4k-factors
    Lei, Hongchuan
    Fu, Hung-Lin
    Shen, Hao
    ARS COMBINATORIA, 2011, 100 : 341 - 348
  • [10] The Hamilton-Waterloo Problem: The Case of Triangle-Factors and One Hamilton Cycle
    Dinitz, J. H.
    Ling, Alan C. H.
    JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (02) : 160 - 176