Unstructured computational meshes for subdivision geometry of scanned geological objects

被引:3
|
作者
Mezentsev, AA [1 ]
Munjiza, A [1 ]
Latham, JP [1 ]
机构
[1] Univ London Imperial Coll Sci & Technol, Dept Earth Sci & Engn, London, England
关键词
laser scanning; unstructured mesh; mesh simplification; subdivision surfaces;
D O I
10.1007/3-540-29090-7_5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a generic approach to generation of surface and volume unstructured meshes for complex free-form objects, obtained by laser scanning. A four-stage automated procedure is proposed for discrete data sets: surface mesh extraction from Delaunay tetrahedrization of scanned points, surface mesh simplification, definition of triangular interpolating subdivision faces, Delaunay volumetric meshing of obtained geometry. The mesh simplification approach is based on the medial Hausdorff distance envelope between scanned and simplified geometric surface meshes. The simplified mesh is directly used as an unstructured control mesh for subdivision surface representation that precisely captures arbitrary shapes of faces, composing the boundary of scanned objects. CAD model in Boundary Representation retains sharp and smooth features of the geometry for further meshing. Volumetric meshes with the MezGen code are used in the combined Finite-Discrete element methods for simulation of complex phenomena within the integrated Virtual Geoscience Workbench environment (VGW).
引用
收藏
页码:73 / 89
页数:17
相关论文
共 44 条
  • [1] Interpolatory, solid subdivision of unstructured hexahedral meshes
    McDonnell, KT
    Chang, YS
    Qin, H
    [J]. VISUAL COMPUTER, 2004, 20 (06): : 418 - 436
  • [2] Interpolatory, solid subdivision of unstructured hexahedral meshes
    Kevin T. McDonnell
    Yu-Sung Chang
    Hong Qin
    [J]. The Visual Computer, 2004, 20 : 418 - 436
  • [3] Computational geometry and spatial meshes
    Otero, C
    Togores, R
    [J]. COMPUTATIONAL SCIENCE-ICCS 2002, PT II, PROCEEDINGS, 2002, 2330 : 315 - 324
  • [4] Geometry-aided rectilinear partitioning of unstructured meshes
    Koppler, R
    [J]. PARALLEL COMPUTATION, 1999, 1557 : 450 - 459
  • [5] Scaling of Supercomputer Calculations on Unstructured Surface Computational Meshes
    B. M. Shabanov
    A. A. Rybakov
    S. S. Shumilin
    M. Yu. Vorobyov
    [J]. Lobachevskii Journal of Mathematics, 2021, 42 : 2571 - 2579
  • [6] Scaling of Supercomputer Calculations on Unstructured Surface Computational Meshes
    Shabanov, B. M.
    Rybakov, A. A.
    Shumilin, S. S.
    Vorobyov, M. Yu.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (11) : 2571 - 2579
  • [7] A subdivision scheme for unstructured quadrilateral meshes with improved convergence rate for isogeometric analysis
    Ma, Yue
    Ma, Weiyin
    [J]. GRAPHICAL MODELS, 2019, 106
  • [8] Reconstruction of body geometry on unstructured meshes by the immersed boundary method
    Abalakin I.V.
    Zhdanova N.S.
    Soukov S.A.
    [J]. Mathematical Models and Computer Simulations, 2017, 9 (1) : 83 - 91
  • [9] Including geological orientation information into geophysical inversions with unstructured tetrahedral meshes
    Kangazian, Mitra
    Farquharson, Colin G.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 238 (02) : 827 - 847
  • [10] Self-Intersections Elimination for Unstructured Surface Computational Meshes
    Freylekhman, S. A.
    Rybakov, A. A.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) : 2846 - 2852