Genome-Wide Characterization of Remorin Genes in Terms of Their Evolution and Expression in Response to Hormone Signals and Abiotic Stresses in Foxtail Millet (Setaria italica)

被引:4
|
作者
Wang, Yingqi [1 ]
Li, Jiaqi [1 ]
Li, Mengyu [1 ]
Li, Yuntong [1 ]
Zhao, Zibo [1 ]
Li, Cong [1 ]
Yue, Jing [2 ]
机构
[1] Shenyang Agr Univ, Coll Biosci & Biotechnol, Shenyang 110866, Peoples R China
[2] Shenyang Univ Chem Technol, Coll Pharmaceut & Biol Engn, Shenyang 110866, Peoples R China
来源
DIVERSITY-BASEL | 2022年 / 14卷 / 09期
关键词
Setaria italica; remorin gene family; hormone signal; abiotic stress; PLASMA-MEMBRANE; ABSCISIC-ACID; S-ACYLATION; LIPID RAFTS; PROTEIN; RICE; VIRUS; PURIFICATION; DUPLICATION; INTERACTS;
D O I
10.3390/d14090711
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Remorin genes encode plant-specific and plasma-membrane-associated proteins that play important roles in several plant physiological processes and adaptations to environmental adaptations. However, little is known regarding the remorin gene family in foxtail millet (Setaria italica), a traditional drought-resistant crop that grows in China. In this study, 21 remorin genes in the foxtail millet genome were identified, renamed according to their chromosomal distribution, and classified into four main groups based on their phylogenetic relationships and structural features. Additionally, we found that SiREM gene family expansion was primarily because of whole- genome duplication and segmental duplication events. Evolutionary changes in the remorin family in Poaceae crops were clarified via synteny analyses. Gene expression analyses through RT-PCR and qRT-PCR indicated that SiREM genes influenced millet growth and development, particularly SiREM1, 4, 11, and 12. Concurrently, SiREM genes expression showed inconsistent response to phytohormone treatments and abiotic stresses, suggesting that they are regulated by different signaling pathways. This systematic reanalysis remorin gene family in the foxtail millet provides fundamental information about the biological functions associated with growth, development, and stress tolerance and evolutionary characteristics, thus helping in elucidating the molecular mechanism and improving the agricultural traits of this crop in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Genome-wide identification and expression profiling of the ABI5 gene family in foxtail millet (Setaria italica)
    Wen, Yinyuan
    Zhao, Zeya
    Cheng, Liuna
    Zhou, Shixue
    An, Mengyao
    Zhao, Juan
    Dong, Shuqi
    Yuan, Xiangyang
    Yin, Meiqiang
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [22] Genome-wide identification of the HKT transcription factor family and their response to salt stress in foxtail millet (Setaria italica)
    Yang, Yulu
    Cheng, Jinjin
    Han, Huarui
    Sun, Rong
    Li, Yajun
    Zhang, Yakun
    Han, Yuanhuai
    Zhang, Hui
    Li, Xukai
    PLANT GROWTH REGULATION, 2023, 99 (01) : 113 - 123
  • [23] Genome-wide identification of the HKT transcription factor family and their response to salt stress in foxtail millet (Setaria italica)
    Yulu Yang
    Jinjin Cheng
    Huarui Han
    Rong Sun
    Yajun Li
    Yakun Zhang
    Yuanhuai Han
    Hui Zhang
    Xukai Li
    Plant Growth Regulation, 2023, 99 : 113 - 123
  • [24] Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.)
    Xiaoqian Ma
    Shutao Dai
    Na Qin
    Cancan Zhu
    Jiafan Qin
    Junxia Li
    BMC Plant Biology, 23
  • [25] Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.)
    Ma, Xiaoqian
    Dai, Shutao
    Qin, Na
    Zhu, Cancan
    Qin, Jiafan
    Li, Junxia
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [26] Genome-wide identification and expression analysis of the DREB gene family in foxtail millet (Setaria Italica L.)
    Yujia Zhang
    Liguang Zhang
    Mingxun Chen
    Jiagang Wang
    Shuqi Dong
    Xiangyang Yuan
    Xiaorui Li
    BMC Plant Biology, 25 (1)
  • [27] Genome-wide identification and expression profiling of the ABI5 gene family in foxtail millet (Setaria italica)
    Yinyuan Wen
    Zeya Zhao
    Liuna Cheng
    Shixue Zhou
    Mengyao An
    Juan Zhao
    Shuqi Dong
    Xiangyang Yuan
    Meiqiang Yin
    BMC Plant Biology, 24
  • [28] Genome-wide characterization of Remorin gene family and their responsive expression to abiotic stresses and plant hormone in Brassica napus
    Sun, Nan
    Zhou, Jiale
    Liu, Yanfeng
    Li, Dong
    Xu, Xin
    Zhu, Zihao
    Xu, Xuesheng
    Zhan, Renhui
    Zhang, Hongxia
    Wang, Limin
    PLANT CELL REPORTS, 2024, 43 (06)
  • [29] Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.)
    Fan, Yu
    Wei, Xiaobao
    Lai, Dili
    Yang, Hao
    Feng, Liang
    Li, Long
    Niu, Kexin
    Chen, Long
    Xiang, Dabing
    Ruan, Jingjun
    Yan, Jun
    Cheng, Jianping
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [30] Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.)
    Yu Fan
    Xiaobao Wei
    Dili Lai
    Hao Yang
    Liang Feng
    Long Li
    Kexin Niu
    Long Chen
    Dabing Xiang
    Jingjun Ruan
    Jun Yan
    Jianping Cheng
    BMC Plant Biology, 21