Steering an Actuated-Tip Needle in Biological Tissue: Fusing FBG-Sensor Data and Ultrasound Images

被引:0
|
作者
Shahriari, Navid [1 ,2 ]
Roesthuis, Roy J. [1 ]
van de Berg, Nick J. [3 ]
van den Dobbelsteen, John J. [3 ]
Misra, Sarthak [1 ,2 ]
机构
[1] Univ Twente, MIRA Inst Biomed Technol & Tech Med, Dept Biomech Engn, Surg Robot Lab, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Ctr Med Imaging North East Netherlands, NL-9700 AB Groningen, Netherlands
[3] Delft Univ Technol, Dept Biomech Engn 3mE, NL-2600 AA Delft, Netherlands
来源
2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2016年
关键词
DESIGN; BIOPSY; SYSTEM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Needle insertion procedures are commonly performed in current clinical practice for diagnostic and therapeutic purposes. Although prevailing technology allows accurate localization of lesions, they cannot yet be precisely targeted. Needle steering is a promising technique to overcome this challenge. In this paper, we describe the development of a novel steering system for an actuated-tip flexible needle. Strain measurements from an array of Fiber Bragg Grating (FBG) sensors are used for online reconstruction of the needle shape in 3D-space. FBG-sensor data is then fused with ultrasound images obtained from a clinically-approved Automated Breast Volume Scanner (ABVS) using an unscented Kalman filter. A new ultrasound-based tracking algorithm is developed for the robust tracking of the needle in biological tissue. Two experimental cases are presented to evaluate the proposed steering system. In the first case, the needle shape is reconstructed using the tracked tip position in ultrasound images and FBG-sensor measurements, separately. The reconstructed shape is then compared with the actual 3D needle shape obtained from the ABVS. In the second case, two steering experiments are performed to evaluate the overall system by fusing the FBG-sensor data and ultrasound images. Average targeting errors are 1.29 +/- 0.41 mm and 1.42 +/- 0.72 mm in gelatin phantom and biological tissue, respectively.
引用
收藏
页码:4443 / 4449
页数:7
相关论文
共 14 条