A solution of the maximality problem for one-parameter dynamical systems

被引:2
|
作者
Peligrad, Costel [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, 4508 French Hall West, Cincinnati, OH 45221 USA
关键词
One-parameter dynamical system; Connes spectrum; Maximal subalgebra; C-ASTERISK-ALGEBRAS; CROSSED-PRODUCTS; SUBALGEBRAS; FLOWS; AUTOMORPHISMS;
D O I
10.1016/j.aim.2018.02.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a maximality theorem for one-parameter dynamical systems that include W*-, C*- and multiplier one-parameter dynamical systems. Our main result is new even for one parameter actions on commutative multiplier algebras including the algebra C-b(R) of bounded continuous functions on R acted upon by translations. The methods we develop and use in our characterization of maximality include harmonic analysis, topological vector spaces and operator algebra techniques. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:742 / 780
页数:39
相关论文
共 50 条
  • [21] One-parameter dynamical dark-energy from the generalized Chaplygin gas
    von Marttens, Rodrigo
    Barbosa, Dinorah
    Alcaniz, Jailson
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (04):
  • [22] An analytical approach to one-parameter MIMO systems passivity enforcement
    Buscarino, A.
    Fortuna, L.
    Frasca, M.
    Xibilia, M. G.
    INTERNATIONAL JOURNAL OF CONTROL, 2012, 85 (09) : 1235 - 1247
  • [23] EXPANSIVE ONE-PARAMETER FLOWS
    BOWEN, R
    WALTERS, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (01) : 180 - &
  • [24] ONE-PARAMETER INVERSE SEMIGROUPS
    EBERHART, C
    SELDEN, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 168 (JUN) : 53 - &
  • [25] One-parameter families of curves
    Eisenhart, LP
    AMERICAN JOURNAL OF MATHEMATICS, 1915, 37 : 179 - 191
  • [26] EXPONENTIAL REPRESENTATION OF SOLUTIONS OF PFAFFIAN SYSTEMS (THE ONE-PARAMETER CASE)
    GOLUBEVA, VA
    LEKSIN, VP
    DIFFERENTIAL EQUATIONS, 1991, 27 (09) : 1078 - 1088
  • [27] Mesoscopic nucleation theory for confined systems: A one-parameter model
    Duran-Olivencia, Miguel A.
    Lutsko, James F.
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [28] On solving periodically perturbed nonconservative systems with a one-parameter embedding
    Liu, G
    Fu, D
    Shen, Z
    COMPUTING, 2002, 69 (03) : 227 - 238
  • [29] A study of the global asymptotic stability of a one-parameter family of systems
    Grishanina, G. E.
    Inozemtseva, N. G.
    Sadovnikova, M. B.
    DOKLADY MATHEMATICS, 2014, 89 (01) : 110 - 111
  • [30] On One-Parameter Catalan Arrays
    Agapito, Jose
    Mestre, Angela
    Torres, Maria M.
    Petrullo, Pasquale
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (05)