An energy functional for Lagrangian tori in CP2

被引:0
|
作者
Ma, Hui [1 ]
Mironov, Andrey E. [2 ,3 ]
Zuo, Dafeng [4 ,5 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Sobolev Inst Math, Pr Acad Koptyuga 4, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
[4] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[5] Chinese Acad Sci, USTC, Wu Wen Tsun Key Lab Math, Hefei, Anhui, Peoples R China
基金
俄罗斯基础研究基金会;
关键词
Lagrangian surfaces; Energy functional; Novikov-Veselov hierarchy; MINIMAL TORI; SURFACES; EXAMPLES; SUBMANIFOLDS;
D O I
10.1007/s10455-017-9589-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A two-dimensional periodic Schrodingier operator is associated with every Lagrangian torus in the complex projective plane CP2. Using this operator, we introduce an energy functional on the set of Lagrangian tori. It turns out this energy functional coincides with the Willmore functional W-introduced by Montiel and Urbano. We study the energy functional on a family of Hamiltonian-minimal Lagrangian tori and support the Montiel-Urbano conjecture that the minimum of the functional is achieved by the Clifford torus. We also study deformations of minimal Lagrangian tori and show that if a deformation preserves the conformal type of the torus, then it also preserves the area, i.e., preserves the value of the energy functional. In particular, the deformations generated by Novikov-Veselov equations preserve the area of minimal Lagrangian tori.
引用
收藏
页码:583 / 595
页数:13
相关论文
共 50 条
  • [21] A Helfrich functional for compact surfaces in CP2
    Yao, Zhongwei
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2024, 66 (01) : 36 - 50
  • [22] The minimal genus problem in CP2 # CP2
    Nouh, Mohamed Ait
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (02): : 671 - 686
  • [23] Toric constructions of monotone Lagrangian submanifolds in Cp2 and Cp1 x Cp1
    Abreu, Miguel
    Gadbled, Agnes
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2017, 15 (01) : 151 - 187
  • [24] On K2 of Fp [Cp2 x Cp2]
    Chen, Hong
    Gao, Yubin
    Tang, Guoping
    [J]. ALGEBRA COLLOQUIUM, 2013, 20 (04) : 681 - 688
  • [26] EXPLICIT SELF-DUAL METRICS ON CP2= ... =CP2
    LEBRUN, C
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 34 (01) : 223 - 253
  • [27] Fuzzy CP2
    Alexanian, G
    Balachandran, AP
    Immirzi, G
    Ydri, B
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 28 - 53
  • [28] ON THE CLASSICAL ENERGY-SPECTRUM OF CP2 MODELS
    CATENACCI, R
    MARTELLINI, M
    REINA, C
    [J]. PHYSICS LETTERS B, 1982, 115 (06) : 461 - 462
  • [29] INSTANTONS ON CP2
    BUCHDAHL, NP
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1986, 24 (01) : 19 - 52
  • [30] LAWS OF CP WR CP2
    CATES, ML
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (04): : A459 - A459