Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea

被引:46
|
作者
Edgcomb, VP
Molyneaux, SJ
Saito, MA
Lloyd, K
Böer, S
Wirsen, CO
Atkins, MS
Teske, A
机构
[1] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA
[2] Woods Hole Oceanog Inst, Marine Chem & Geochem Dept, Woods Hole, MA 02543 USA
[3] Univ Oldenburg, ICBM, Inst Biol & Chem Ocean, D-26110 Oldenburg, Germany
[4] Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA
关键词
D O I
10.1128/AEM.70.4.2551-2555.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The chemical stress factors for microbial life at deep-sea hydrothermal vents include high concentrations of heavy metals and sulfide. Three hyperthermophillic vent archaea, the sulfur-reducing heterotrophs Thermococcus fumicolans and Pyrococcus strain GB-D and the chemolithoautotrophic methanogen Methanocaldococcus jannaschii, were tested for survival. tolerance to heavy metals (Zn, Co, and Cu) and sulfide. The sulfide addition consistently ameliorated the high toxicity of free metal cations by the formation of dissolved metal-sulfide complexes as well as solid precipitates. Thus, chemical speciation of heavy metals with sulfide allows hydrothermal vent archaea to tolerate otherwise toxic metal concentrations in their natural environment.
引用
收藏
页码:2551 / 2555
页数:5
相关论文
共 50 条
  • [41] Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates
    Lelievre, Yann
    Legendre, Pierre
    Matabos, Marjolaine
    Mihaly, Steve
    Lee, Raymond W.
    Sarradin, Pierre-Marie
    Arango, Claudia P.
    Sarrazin, Jozee
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2017, 284 (1852)
  • [42] Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys
    Jialin Hou
    Stefan M. Sievert
    Yinzhao Wang
    Jeffrey S. Seewald
    Vengadesh Perumal Natarajan
    Fengping Wang
    Xiang Xiao
    [J]. Microbiome, 8
  • [43] THE CHITIN SECRETING SYSTEM FROM DEEP-SEA HYDROTHERMAL VENT WORMS
    GAILL, F
    SHILLITO, B
    LECHAIRE, JP
    CHANZY, H
    GOFFINET, G
    [J]. BIOLOGY OF THE CELL, 1992, 76 (02) : 201 - 204
  • [44] Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys
    Hou, Jialin
    Sievert, Stefan M.
    Wang, Yinzhao
    Seewald, Jeffrey S.
    Natarajan, Vengadesh Perumal
    Wang, Fengping
    Xiao, Xiang
    [J]. MICROBIOME, 2020, 8 (01)
  • [45] First report of nematocysts fired at deep-sea hydrothermal vent nematodes
    Zeppilli, Daniela
    Puce, Stefania
    [J]. MARINE BIODIVERSITY, 2020, 50 (04)
  • [46] First report of nematocysts fired at deep-sea hydrothermal vent nematodes
    Daniela Zeppilli
    Stefania Puce
    [J]. Marine Biodiversity, 2020, 50
  • [47] ANATOMY, STRUCTURE AND ULTRASTRUCTURE OF THE GILL OF A DEEP-SEA HYDROTHERMAL VENT MYTILID
    LEPENNEC, M
    HILY, A
    [J]. OCEANOLOGICA ACTA, 1984, 7 (04) : 517 - 523
  • [48] An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent
    Beatty, JT
    Overmann, J
    Lince, MT
    Manske, AK
    Lang, AS
    Blankenship, RE
    Van Dover, CL
    Martinson, TA
    Plumley, FG
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (26) : 9306 - 9310
  • [49] Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review
    Van Dover, Cindy Lee
    [J]. MARINE ENVIRONMENTAL RESEARCH, 2014, 102 : 59 - 72
  • [50] Evidence for organic complexation of copper in deep-sea hydrothermal vent systems
    Sander, S. G.
    Koschinsky, A.
    Hunter, K. A.
    Massoth, G.
    Stott, M.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2006, 70 (18) : A554 - A554