INS algorithm using quaternon model for low cost IMU

被引:73
|
作者
Kong, XY [1 ]
机构
[1] Univ Technol Sydney, Fac Engn, Sydney, NSW 2007, Australia
关键词
quaternion; inertial navigation system; global positioning system; navigation algorithm;
D O I
10.1016/j.robot.2004.02.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a generic inertial navigation system (INS) error propagation model that does not rely on small misalignment angles assumption. The modelling uses quaternions in the computer frame approach. Based on this model, an INS algorithm is developed for low cost inertial measurement unit (IMU) to solve the initial attitudes uncertainty using in-motion alignment. The distribution approximation filter (DAF) is used to implement the non-linear data fusion algorithm. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 246
页数:26
相关论文
共 50 条
  • [41] How the Integral Operations in INS Algorithms Overshadow the Contributions of IMU Signal Denoising Using Low-Pass Filters
    Ban, Yalong
    Zhang, Quan
    Niu, Xiaoji
    Guo, Wenfei
    Zhang, Hongping
    Liu, Jingnan
    JOURNAL OF NAVIGATION, 2013, 66 (06): : 837 - 858
  • [42] Improving the performance of tightly-coupled GPS/INS navigation by using time-differenced GPS-carrier-phase measurements and low-cost MEMS IMU
    Zhao Y.
    Becker M.
    Becker D.
    Leinen S.
    Gyroscopy and Navigation, 2015, 6 (2) : 133 - 142
  • [43] Performance of GNSS/INS System Using MEMS Sensors Comparison With Tactical-Grade FOG IMU, MEMS IMU
    Houghton, Joshua
    Mutschler, Mike
    SEA TECHNOLOGY, 2013, 54 (08) : 15 - +
  • [44] A new approach to better low-cost MEMS IMU performance using sensor arrays
    Martin, Henry
    Groves, Paul
    Newman, Mark
    Faragher, Ramsey
    PROCEEDINGS OF THE 26TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2013), 2013, : 2125 - 2142
  • [45] Terrain-based Vehicle Localization Using Low Cost MEMS-IMU Sensors
    Ahmed, Hamad
    Tahir, M.
    2016 IEEE 83RD VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2016,
  • [46] Measuring Tilt with an IMU Using the Taylor Algorithm
    Demkowicz, Jerzy
    REMOTE SENSING, 2024, 16 (15)
  • [47] The Effects of Using Heading Measurement during Alignment of a Low-cost IMU/GPS system
    Choi, Moonseok
    Won, Daehee
    Sung, Sangkyoung
    Lee, Jiyun
    Kim, Jeongrae
    Park, Jun-Pyo
    Park, Heung-Won
    Lee, Young Jae
    PROCEEDINGS OF THE 26TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2013), 2013, : 2175 - 2179
  • [48] A Comparison of Pedestrian Dead-Reckoning Algorithms using a Low-Cost MEMS IMU
    Jimenez, A. R.
    Seco, F.
    Prieto, C.
    Guevara, J.
    WISP 2009: 6TH IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, PROCEEDINGS, 2009, : 37 - 42
  • [49] Combining Low-Cost Inertial Measurement Unit (IMU) and Deep Learning Algorithm for Predicting Vehicle Attitude
    Huang, JunYing
    Huang, ZhengYu
    Chen, KuanHung
    2017 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING, 2017, : 237 - 239
  • [50] A Method of A Method of Low-Cost IMU Calibration and Alignment
    Lv, Jixin
    Ravankar, Ankit A.
    Kobayashi, Yukinori
    Emaru, Takanori
    2016 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2016, : 373 - 378