Remarks on the extension group for purely infinite corona algebras

被引:1
|
作者
Ng, P. W. [1 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, 217 Maxim Doucet Hall,POB 43568, Lafayette, LA 70504 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 13期
关键词
C*-algebras; operator theory; corona algebras; Brown-Douglas-Fillmore theory; K theory; C-ASTERISK-ALGEBRAS; CSTAR-ALGEBRAS; IDEAL; ZERO;
D O I
10.1080/03081087.2020.1803188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study BDF theory in the context of (not necessarily simple) purely infinite corona algebras. Let B be a nonunital separable simple C*-algebra with standard regularity properties for which C(B) is purely infinite (though not necessarily simple). Let A be a separable nuclear C*-algebra. We prove a BDF Voiculescu decomposition theorem for maps from A to C(B), and use this to prove that Ext(sigma) (A, B) is a group. Then, restricting to the caseA = C(X), for some compact metric space X, and B has continuous scale, we provide characterizations of the neutral element for Ext(C(X), B).
引用
收藏
页码:2459 / 2504
页数:46
相关论文
共 50 条