A NEW CHARACTERIZATION OF COMPLETE LINEAR WEINGARTEN HYPERSURFACES IN REAL SPACE FORMS

被引:23
|
作者
Aquino, Cicero P. [1 ]
de Lima, Henrique F. [2 ]
Velasquez, Marco A. L. [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
space forms; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; Clifford torus; circular cylinder; hyperbolic cylinder; CONSTANT SCALAR CURVATURE; RIEMANNIAN MANIFOLDS; MEAN-CURVATURE;
D O I
10.2140/pjm.2013.261.33
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the Hopf's strong maximum principle in order to obtain a suitable characterization of the complete linear Weingarten hypersurfaces immersed in a real space form Q(c)(n+1) of constant sectional curvature c. Under the assumption that the mean curvature attains its maximum and supposing an appropriated restriction on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a Clifford torus, if c = 1, a circular cylinder, if c = 0, or a hyperbolic cylinder, if c = -1.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
  • [21] A NEW CHARACTERIZATION OF TYPE (A) AND RULED REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS
    Wang, Yaning
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (04) : 897 - 904
  • [22] On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds
    Aquino, Cicero P.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco Antonio L.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2015, 56 (04): : 515 - 529
  • [23] On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space
    de Lima, Henrique F.
    Velasquez, Marco A. L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (01): : 49 - 65
  • [24] Channel linear Weingarten surfaces in space forms
    Udo Hertrich-Jeromin
    Mason Pember
    Denis Polly
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 969 - 1009
  • [25] Strongly Stable Linear Weingarten Hypersurfaces Immersed in the Hyperbolic Space
    de Lima, Henrique F.
    de Sousa, Antonio F.
    Velasquez, Marco Antonio L.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2147 - 2160
  • [26] STABILITY OF GENERALIZED LINEAR WEINGARTEN HYPERSURFACES IMMERSED IN THE EUCLIDEAN SPACE
    da Silva, Jonathan F.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    PUBLICACIONS MATEMATIQUES, 2018, 62 (01) : 95 - 111
  • [27] LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACE
    Yang, Dan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 271 - 284
  • [28] Channel linear Weingarten surfaces in space forms
    Hertrich-Jeromin, Udo
    Pember, Mason
    Polly, Denis
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (04): : 969 - 1009
  • [29] LINEAR WEINGARTEN HYPERSURFACES WITH BOUNDED MEAN CURVATURE IN THE HYPERBOLIC SPACE
    Aquino, Cicero P.
    De Lima, Henrique F.
    Velasquez, Marco Antonio L.
    GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (03) : 653 - 663
  • [30] On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space
    Henrique F. de Lima
    Marco A. L. Velásquez
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 49 - 65