Confining H3PO4 network in covalent organic frameworks enables proton super flow

被引:51
|
作者
Tao, Shanshan [1 ]
Zhai, Lipeng [1 ]
Wonanke, A. D. Dinga [2 ]
Addicoat, Matthew A. [2 ]
Jiang, Qiuhong [1 ]
Jiang, Donglin [1 ,3 ]
机构
[1] Natl Univ Singapore, Dept Chem, Fac Sci, 3 Sci Dr 3, Singapore 117543, Singapore
[2] Nottingham Trent Univ, Sch Sci & Technol, Clifton Lane, Nottingham NG11 8NS, England
[3] Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus Tianjin Univ, Fuzhou 350207, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
PHOSPHORIC-ACID; CONDUCTIVITY; CRYSTALLINE; MEMBRANES; MECHANISMS; PLATFORM; H-1;
D O I
10.1038/s41467-020-15918-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Development of porous materials combining stability and high performance has remained a challenge. This is particularly true for proton-transporting materials essential for applications in sensing, catalysis and energy conversion and storage. Here we report the topology guided synthesis of an imine-bonded (C=N) dually stable covalent organic framework to construct dense yet aligned one-dimensional nanochannels, in which the linkers induce hyperconjugation and inductive effects to stabilize the pore structure and the nitrogen sites on pore walls confine and stabilize the H3PO4 network in the channels via hydrogen-bonding interactions. The resulting materials enable proton super flow to enhance rates by 2-8 orders of magnitude compared to other analogues. Temperature profile and molecular dynamics reveal proton hopping at low activation and reorganization energies with greatly enhanced mobility. Development of porous proton-transporting materials combining stability and high performance has remained a challenge. Here, the authors report a stable covalent organic framework with excellent proton conductivity in which nitrogen sites on pore walls confine and stabilize a H3PO4 network in the channels via hydrogen-bonding interactions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A H3PO4 preswelling strategy to enhance the proton conductivity of a H2SO4-doped polybenzimidazole membrane for vanadium flow batteries
    Peng, Sangshan
    Yan, Xiaoming
    Zhang, Daishuang
    Wu, Xuemei
    Luo, Yongliang
    He, Gaohong
    RSC ADVANCES, 2016, 6 (28): : 23479 - 23488
  • [22] REACTIONS OF WOLLASTONITE AND XONOTLITE WITH NH4H2PO4 AND H3PO4
    MIYAKE, M
    KOMARNENI, S
    ROY, R
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1987, 179 (1-4): : 383 - 393
  • [23] Proton transfer reaction in poly (2, 5-polybenzimidazole) doping with H3PO4
    Sun, Hong
    Zuo, Jiaji
    Wang, Xun
    Wan, Ye
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (25) : 13808 - 13815
  • [24] Adsorption study on the corrosion inhibition of steel in H3PO4/organic solvent mixtures
    Khamis, E.
    Hosny, A.
    Adsorption Science and Technology, 1995, 12 (01): : 67 - 77
  • [25] The kinetics of dissolution of colemanite in H3PO4 solutions
    Temur, H
    Yartasi, A
    Çopur, M
    Kocakerim, MM
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (11) : 4114 - 4119
  • [26] BEHAVIOR OF TITANIUM CARBONITRIDE IN H3PO4 SOLUTIONS
    MEDVEDEV, DM
    SHISHKO, NP
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1991, 64 (11): : 2164 - 2168
  • [27] CAPACITANCE MEASUREMENTS ON PLATINUM IN H3PO4 SOLUTIONS
    FORMARO, L
    TRASATTI, S
    ELECTROCHIMICA ACTA, 1970, 15 (05) : 729 - &
  • [28] HYDROLYTIC POLYMERIZATION OF CAPROLACTAM CATALYZED BY H3PO4
    MIZEROVSKII, LN
    SILANTEVA, VG
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1978, 20 (06): : 1351 - 1357
  • [29] The gas-phase acidity of H3PO4
    Morris, RA
    Knighton, WB
    Viggiano, AA
    Hoffman, BC
    Schaefer, HF
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (09): : 3545 - 3547
  • [30] 多元弱酸H3PO4测定研究
    施立新
    李军
    黑龙江冶金, 2006, (02) : 8 - 9+20