Electrostatic-Consistent Coarse-Grained Potentials for Molecular Simulations of Proteins

被引:29
|
作者
Spiga, Enrico [1 ]
Alemani, Davide [1 ]
Degiacomi, Matteo T. [1 ]
Cascella, Michele [2 ]
Dal Peraro, Matteo [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Life Sci, Inst Bioengn, CH-1015 Lausanne, Switzerland
[2] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
WATER-SOLUBLE ANALOG; FORCE-FIELD; DYNAMICS SIMULATIONS; STRUCTURAL DYNAMICS; NUCLEIC-ACIDS; SOLVENT MODEL; BETA; RECOGNITION; ALGORITHMS; SEQUENCES;
D O I
10.1021/ct400137q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new generation of coarse-grained (CG) potentials that account for a simplified electrostatic description of soluble proteins. The treatment of permanent electrostatic dipoles of the backbone and polar side-chains allows to simulate proteins, preserving an excellent structural and dynamic agreement with respective reference structures and all-atom molecular dynamics simulations. Moreover, multiprotein complexes can be well described maintaining their molecular interfaces thanks to the ability of this scheme to better describe the actual electrostatics at a CG level of resolution. An efficient and robust heuristic algorithm based on particle swarm optimization is used for the derivation of CG parameters via a force-matching procedure. The ability of this protocol to deal with high dimensional search spaces suggests that the extension of this optimization procedure to larger data sets may lead to the generation of a fully transferable CG force field. At the present stage, these electrostatic-consistent CG potentials are easily and efficiently parametrized, show a good degree of transferability, and can be used to simulate soluble proteins or, more interestingly, large macromolecular assemblies for which long all-atom simulations may not be easily affordable.
引用
下载
收藏
页码:3515 / 3526
页数:12
相关论文
共 50 条
  • [31] Coarse-grained models for proteins
    Tozzini, V
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (02) : 144 - 150
  • [32] Discussion on "Coarse-grained molecular dynamics simulations of clay compression"
    Sun, He-mei
    Kang, Xin
    COMPUTERS AND GEOTECHNICS, 2023, 155
  • [33] Coarse-grained molecular dynamics simulations of poly(ethylene terephthalate)
    Golmohammadi, Nazila
    Boland-Hemmat, Mohadeseh
    Barahmand, Sanam
    Eslami, Hossein
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (11):
  • [34] Evaluating druggability by means of coarse-grained molecular dynamics simulations
    Orekhov, Philipp
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S200 - S200
  • [35] Coarse-grained molecular dynamics simulations of ionic polymer networks
    Dirama, T. E.
    Varshney, V.
    Anderson, K. L.
    Shumaker, J. A.
    Johnson, J. A.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2008, 12 (03) : 205 - 220
  • [36] Modified Fast Multipole Method for Coarse-Grained Molecular Simulations
    Poursina, Mohammad
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 407A - 407A
  • [37] Ultra coarse-grained molecular dynamics simulations of lipid bilayers
    Carrillo, Jan Michael
    Katsaras, John
    Sumpter, Bobby
    Ashkar, Rana
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [38] Assembly of lipoproteins revealed by coarse-grained molecular dynamics simulations
    Shih, Amy Y.
    Freddolino, Peter L.
    Arkhipov, Anton
    Schulten, Klaus
    BIOPHYSICAL JOURNAL, 2007, : 250A - 250A
  • [39] A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose
    Wohlert, Jakob
    Berglund, Lars A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (03) : 753 - 760
  • [40] Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum
    Arkhipov, Anton
    Freddolino, Peter L.
    Imada, Katsumi
    Namba, Keiichi
    Schulten, Klaus
    BIOPHYSICAL JOURNAL, 2006, 91 (12) : 4589 - 4597