A Nitrogen-Doped Carbon Matrix Aiming at Inhibiting Polysulfide Shuttling for Lithium-Sulfur Batteries

被引:26
|
作者
Zhao, Yu [1 ]
Wang, Zhoulu [2 ]
Zhao, Xiliang [1 ]
Wang, Xiaoyan [1 ]
Lam, Kwok-Ho [3 ]
Chen, Fuming [1 ]
Zhao, Lingzhi [4 ]
Wang, Shaofeng [1 ]
Hou, Xianhua [1 ,2 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum, Mat,Guangdong Engn Technol Res Ctr Efficient Gree, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Natl & Local Joint Engn Res Ctr Key Mat & Technol, Engn Res Ctr MTEES, Minist Educ, Guangzhou 510006, Peoples R China
[3] Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong 999077, Peoples R China
[4] South China Normal Univ Gingyuan, Sci & Technol Innovat Res Inst Co Ltd, Qingyuan 511517, Peoples R China
基金
中国国家自然科学基金;
关键词
POROUS CARBON; CATHODE MATERIAL; GRAPHENE; CAPACITY; ELECTROLYTE; COMPOSITE; ENERGY; HOST;
D O I
10.1021/acs.energyfuels.0c01909
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-sulfur (Li-S) batteries have been attracting great attention as promising rechargeable batteries because of their large specific capacity and high energy density. However, some technical problems still limit the commercialization value of Li-S batteries such as poor electrical conductivity, shuttle effects, and volume expansion. To overcome the aforementioned issues, N-doped carbon composites were synthesized via a one-step hydrothermal method. To obtain different N-doping configurations, a carbon precursor was annealed at different heating rates, resulting in different N-containing properties. The cell with the most content of pyridinic-N delivered the highest initial discharge capacity of similar to 1121 mAh g(-1), and the specific capacity still retained 605 mAh g(-1) at 200 mA g(-1) after 100 cycles. It was concluded that pyridinic-N has the most significant effect on immobilizing the soluble lithium polysulfides, which stabilized the cycle of Li-S batteries.
引用
收藏
页码:10188 / 10195
页数:8
相关论文
共 50 条
  • [31] MOFs-derived nitrogen-doped carbon interwoven with carbon nanotubes for high sulfur content lithium-sulfur batteries
    Walle, Maru Dessie
    Zhang, Mengyuan
    Zeng, Ke
    Li, Yajuan
    Liu, You-Nian
    APPLIED SURFACE SCIENCE, 2019, 497
  • [32] Modulating the Void Space of Nitrogen-Doped Hollow Mesoporous Carbon Spheres for Lithium-Sulfur Batteries
    Liu, Yang
    Kong, Yueqi
    Nanjundan, Ashok Kumar
    Yang, Yannan
    Zhou, Liang
    Huang, Xiaodan
    Yu, Chengzhong
    CHEMNANOMAT, 2020, 6 (06) : 925 - 929
  • [33] Highly porous nitrogen-doped seaweed carbon for high-performance lithium-sulfur batteries
    Hencz, Luke
    Gu, Xingxing
    Zhou, Xiaosong
    Martens, Wayde
    Zhang, Shanqing
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (20) : 12336 - 12347
  • [34] A multifunctional UiO-66@carbon interlayer as an efficacious suppressor of polysulfide shuttling for lithium-sulfur batteries
    Zheng, Shaoning
    Zhao, Xinnan
    Liu, Guihua
    Wu, Feichao
    Li, Jingde
    NANOTECHNOLOGY, 2021, 32 (36)
  • [35] Encapsulating polysulfide with high pyridinic nitrogen-doped ordered mesoporous carbons for long-life lithium-sulfur batteries
    TAN Yingbin
    LI Zhengzheng
    YANG Bing
    Baosteel Technical Research, 2021, 15 (01) : 34 - 41
  • [36] Nitrogen-doped MoS2 as a catalytic sulfur host for lithium-sulfur batteries
    Cho, Jinil
    Ryu, Seokgyu
    Gong, Yong Jun
    Pyo, Seonmi
    Yun, Heejun
    Kim, Heebae
    Lee, Jeewon
    Yoo, Jeeyoung
    Kim, Youn Sang
    CHEMICAL ENGINEERING JOURNAL, 2022, 439
  • [37] Nitrogen-Doped Mesoporous Carbon: A Top-Down Strategy to Promote Sulfur Immobilization for Lithium-Sulfur Batteries
    Zhao, Xiaohui
    Liu, Ying
    Manuel, James
    Chauhan, Ghanshyam S.
    Ahn, Hyo-Jun
    Kim, Ki-Won
    Cho, Kwon-Koo
    Ahn, Jou-Hyeon
    CHEMSUSCHEM, 2015, 8 (19) : 3234 - 3241
  • [38] Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high performance lithium-sulfur batteries
    Geng, Xianwei
    Yi, Ruowei
    Yu, Zhiming
    Zhao, Cezhou
    Li, Yinqing
    Wei, Qiuping
    Liu, Chenguang
    Zhao, Yinchao
    Lu, Bing
    Yang, Li
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (12) : 10071 - 10081
  • [39] Nitrogen-doped hollow carbon boosting the anchoring of sulfur capacity for high-loading lithium-sulfur batteries
    Zhang, Yu
    Tang, Ruixian
    Ma, Lei
    Zhao, Fangfang
    Tang, Gen
    Wang, Yue
    Pan, Cong
    Pang, Aimin
    Li, Wei
    Wei, Liangming
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 335
  • [40] Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries
    Xiao, Qinghuiqiang
    Li, Gaoran
    Li, Minjie
    Liu, Ruiping
    Li, Haibo
    Ren, Pengfei
    Dong, Yue
    Feng, Ming
    Chen, Zhongwei
    JOURNAL OF ENERGY CHEMISTRY, 2020, 44 : 61 - 67