Entanglement rates for Renyi, Tsallis, and other entropies

被引:8
|
作者
Vershynina, Anna [1 ]
机构
[1] Univ Houston, Dept Math, Philip Guthrie Hoffman Hall,3551 Cullen Blvd, Houston, TX 77204 USA
关键词
CAPACITY;
D O I
10.1063/1.5037802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide an upper bound on the maximal entropy rate at which the entropy of the expected density operator of a given ensemble of two states changes under nonlocal unitary evolution. A large class of entropy measures in considered, which includes Renyi and Tsallis entropies. The result is derived from a general bound on the trace-norm of a commutator, which can be expected to find other implementations. We apply this result to bound the maximal rate at which quantum dynamics can generate entanglement in a bipartite closed system with Renyi and Tsallis entanglement entropies taken as measures of entanglement in the system.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Renyi entropies and Fisher informations as measures of nonextensivity in a Tsallis setting
    Pennini, F
    Plastino, AR
    Plastino, A
    [J]. PHYSICA A, 1998, 258 (3-4): : 446 - 457
  • [22] Entanglement Renyi entropies in conformal field theories and holography
    Fursaev, D. V.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [23] Entanglement spectrum and Renyi entropies of nonrelativistic conformal fermions
    Porter, William J.
    Drut, Joaquin E.
    [J]. PHYSICAL REVIEW B, 2016, 94 (16)
  • [24] Some results on the shape dependence of entanglement and Renyi entropies
    Allais, Andrea
    Mezei, Mark
    [J]. PHYSICAL REVIEW D, 2015, 91 (04):
  • [25] Area-law versus Renyi and Tsallis black hole entropies
    Nojiri, Shin'ichi
    Odintsov, Sergei D.
    Faraoni, Valerio
    [J]. PHYSICAL REVIEW D, 2021, 104 (08)
  • [26] Tsallis Entropies and Entanglement of Superposed Trio Coherent States
    Liang, Mai-Lin
    Yuan, Bing
    Zhang, Jia-Nan
    [J]. CHINESE JOURNAL OF PHYSICS, 2009, 47 (06) : 827 - 837
  • [27] Generalizations of operator Shannon inequality based on Tsallis and Renyi relative entropies
    Isa, Hiroshi
    Ito, Masatoshi
    Kamei, Eizaburo
    Tohyama, Hiroaki
    Watanabe, Masayuki
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 3148 - 3155
  • [28] Renyi and Tsallis Entropies of the Aharonov-Bohm Ring in Uniform Magnetic Fields
    Olendski, Oleg
    [J]. ENTROPY, 2019, 21 (11)
  • [29] Comment on "Critique of multinomial coefficient method for evaluating Tsallis and Renyi entropies" by AS Parvan
    Oikonomou, Thomas
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (05) : 781 - 784
  • [30] Tsallis, Renyi, and Shannon entropies for time-dependent mesoscopic RLC circuits
    Aguiar, V.
    Guedes, I.
    Pedrosa, I. A.
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (11):