A coherent polycrystal model for the inverse Hall-Petch relation in nanocrystalline materials

被引:105
|
作者
Song, HW [1 ]
Guo, SR [1 ]
Hu, ZQ [1 ]
机构
[1] Acad Sinica, Inst Met Res, State key Lab RSA, Shenyang 110015, Peoples R China
来源
NANOSTRUCTURED MATERIALS | 1999年 / 11卷 / 02期
关键词
D O I
10.1016/S0965-9773(99)00033-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A coherent polycrystal model for the abnormal grain size dependence is presented. It treats the nanocrystalline material as a coherent precipitate strengthened two-phase alloy in which all the grain boundaries merge into a whole continuous matrix acid each of the grains embeds in the matrix coherently. According to this model, the transition from the normal to the inverse Hall-Fetch relation corresponds to thr role-exchange of the grain bulk and the grain boundary in the deforming mechanism. Theoretical formula based on this model is compared with the available experimental data. Thr results indicate that the model gives an excellent description of the so-called inverse Hall-Petch relation in the nanocrystalline materials. (C) 1999 Acta Metallurgica Inc.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 50 条
  • [21] A unified mechanistic model for Hall-Petch and inverse Hall-Petch relations of nanocrystalline metals based on intragranular dislocation storage
    Han, Quanfeng
    Yi, Xin
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 154
  • [22] ON THE VALIDITY OF THE HALL-PETCH RELATIONSHIP IN NANOCRYSTALLINE MATERIALS
    CHOKSHI, AH
    ROSEN, A
    KARCH, J
    GLEITER, H
    SCRIPTA METALLURGICA, 1989, 23 (10): : 1679 - 1683
  • [23] The inverse hall-petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis
    Quek, Siu Sin
    Chooi, Zheng Hoe
    Wu, Zhaoxuan
    Zhang, Yong Wei
    Srolovitz, David J.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 88 : 252 - 266
  • [24] Nanomechanics of Hall-Petch relationship in nanocrystalline materials
    Pande, C. S.
    Cooper, K. P.
    PROGRESS IN MATERIALS SCIENCE, 2009, 54 (06) : 689 - 706
  • [25] The inverse Hall-Petch effect in nanocrystalline ZrN coatings
    Qi, Z. B.
    Sun, P.
    Zhu, F. P.
    Wang, Z. C.
    Peng, D. L.
    Wu, C. H.
    SURFACE & COATINGS TECHNOLOGY, 2011, 205 (12): : 3692 - 3697
  • [26] The mechanism of the inverse Hall-Petch relation of nanocrystals
    Takeuchi, S
    SCRIPTA MATERIALIA, 2001, 44 (8-9) : 1483 - 1487
  • [27] Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall-Petch relation
    Shen, T. D.
    Schwarz, R. B.
    Feng, S.
    Swadener, J. G.
    Huang, J. Y.
    Tang, M.
    Zhang, Hanzhong
    Vogel, S. C.
    Zhao, Yusheng
    ACTA MATERIALIA, 2007, 55 (15) : 5007 - 5013
  • [28] Unraveling the Hall-Petch to inverse Hall-Petch transition in nanocrystalline high entropy alloys under shock loading
    Li, Wanghui
    Xiang, Meizhen
    Aitken, Zachary Howard
    Chen, Shuai
    Xu, Yilun
    Yang, Xinyu
    Pei, Qingxiang
    Wang, Jian
    Li, Xiaoyan
    Vastola, Guglielmo
    Gao, Huajian
    Zhang, Yong-Wei
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 178
  • [29] SIMULATION OF INVERSE HALL-PETCH RELATION IN NANOCRYSTALLINE CERAMICS BY DISCRETE DISLOCATION DYNAMICS METHOD
    Bobylev, S., V
    MATERIALS PHYSICS AND MECHANICS, 2020, 46 (01): : 115 - 121
  • [30] Breaking the Hall-Petch law in microcrystalline and nanocrystalline materials
    Malygin, GA
    FIZIKA TVERDOGO TELA, 1995, 37 (08): : 2281 - 2292