Transcendence of Sturmian or morphic continued fractions

被引:52
|
作者
Allouche, JP [1 ]
Davison, JL [1 ]
Queffélec, M [1 ]
Zamboni, LQ [1 ]
机构
[1] Univ Paris 11, CNRS, LRI, F-91405 Orsay, France
基金
美国国家科学基金会;
关键词
D O I
10.1006/jnth.2001.2669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove, using a theorem of W. Schmidt, that if the sequence of partial quotients of the continued fraction expansion of a positive irrational real number takes only two values, and begins with arbitrary long blocks which are "almost squares," then this number is either quadratic or transcendental. This result applies in particular to real numbers whose partial quotients form a Sturmian (or quasi-Sturmian) sequence, or are given by the sequence ( 1 +([n alpha] mod 2))(n much greater than0), or are a "repetitive" fixed point of a binary morphism satisfying some technical conditions. (C) 2001 Academic Press.
引用
收藏
页码:39 / 66
页数:28
相关论文
共 50 条
  • [41] CHAOS AND CONTINUED FRACTIONS
    CORLESS, RM
    FRANK, GW
    MONROE, JG
    PHYSICA D, 1990, 46 (02): : 241 - 253
  • [42] NEARNESS OF CONTINUED FRACTIONS
    JACOBSEN, L
    MATHEMATICA SCANDINAVICA, 1987, 60 (02) : 129 - 147
  • [43] SYMMETRIC CONTINUED FRACTIONS
    Panprasitwech, Oranit
    Laohakosol, Vichian
    Chaichana, Tuangrat
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 745 - +
  • [44] APPROXIMATION BY CONTINUED FRACTIONS
    NATHANSON, MB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (03) : 323 - 324
  • [45] IRRATIONAL CONTINUED FRACTIONS
    HOVSTAD, RM
    LECTURE NOTES IN MATHEMATICS, 1989, 1406 : 18 - 27
  • [46] CONVERGENCE OF CONTINUED FRACTIONS
    JONES, WB
    THRON, WJ
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05): : 1037 - &
  • [47] Cliffordian continued fractions
    Meignen, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 207 - 210
  • [48] GEOMETRY OF CONTINUED FRACTIONS
    IRWIN, MC
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (08): : 696 - 703
  • [49] Geometry of Continued Fractions
    Baxa, C.
    MONATSHEFTE FUR MATHEMATIK, 2016, 180 (03): : 662 - 662
  • [50] Matrix continued fractions
    Sorokin, VN
    Van Iseghem, J
    JOURNAL OF APPROXIMATION THEORY, 1999, 96 (02) : 237 - 257