A Decision Fusion Approach for Clustering of Hyperspectral Data Using Spectral Unmixing Methods

被引:0
|
作者
Gholizadeh, Hamed [1 ]
Zoej, Mohammad Javad Valadan [1 ]
Mojaradi, Barat [2 ]
机构
[1] KN Toosi Univ Technol, Fac Geodesy & Geomat Engn, Vali Asr St,POB 15875-4416, Tehran, Iran
[2] Iran Univ Sci & Technol, Sch Civil Engn, Tehran 16765, Iran
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper aims at a decision fusion approach for combining three spectral unmixing methods to cluster hyperspectral data. Unlike standard image clustering techniques, analyzing hyperspectral data on a pure pixel basis may not be a true assumption. Meanwhile, multiple classifier systems often show better performance than each of the constituent classifiers. This is due to the fact that each classifier makes errors on different regions of the input space. With these facts in mind, this paper distills these two approaches into a single approach and exploits the advantages of both spectral unmixing algorithms and decision fusion methods. In this paper, three unmixing methods namely, Fully Constrained Least Squares (FCLS), Nonnegatively Constrained Least Squares (NCLS) and Sum-to-one Constrained Least Squares (SCLS) are employed as the ensemble classifiers and their results are combined at two different fusion levels: the abstract level and the measurement level. Experimental results on a real-world hyperspectral data proved that the proposed approach shows better clustering results compared to those of K-Means and Fuzzy c-Means in terms of the Adjusted Random Index (ARI) measure.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] SPECTRAL PARTITIONING AND FUSION TECHNIQUES FOR HYPERSPECTRAL DATA CLASSIFICATION AND UNMIXING
    Ammanouil, Rita
    Abou Melhem, Jean
    Farah, Joumana
    Honeine, Paul
    2014 6TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING (ISCCSP), 2014, : 550 - 553
  • [2] Fusion of Hyperspectral, Multispectral, and Panchromatic Data Based on Spectral Unmixing
    Bendoumi, Mohamed Amine
    Benlefki, Tarek
    2018 INTERNATIONAL CONFERENCE ON SIGNAL, IMAGE, VISION AND THEIR APPLICATIONS (SIVA), 2018,
  • [3] FUSION OF HYPERSPECTRAL AND PANCHROMATIC DATA BY SPECTRAL UNMIXING IN THE REFLECTIVE DOMAIN
    Constans Y.
    Fabre S.
    Brunet H.
    Seymour M.
    Crombez V.
    Chanussot J.
    Briottet X.
    Deville Y.
    Revue Francaise de Photogrammetrie et de Teledetection, 2022, 224 (01): : 59 - 74
  • [4] Nonoverlapping Spectral Ranges' Hyperspectral Data Fusion Based on Combined Spectral Unmixing
    Wang, Yihao
    Chen, Jianyu
    Mou, Xuanqin
    Liu, Jia
    Chen, Tieqiao
    Feng, Xiangpeng
    Qu, Bo
    Liu, Jie
    Zhang, Geng
    Li, Siyuan
    REMOTE SENSING, 2025, 17 (04)
  • [5] FUSION OF HYPERSPECTRAL AND PANCHROMATIC IMAGES USING SPECTRAL UNMIXING RESULTS
    Rajabi, Roozbeh
    Ghassemian, Hassan
    SMPR CONFERENCE 2013, 2013, 40-1-W3 : 333 - 336
  • [6] Spectral Variability in Hyperspectral Data Unmixing
    Borsoi, Ricardo
    Imbiriba, Tales
    Bermudez, Jose Carlos
    Richard, Cedric
    Chanussot, Jocelyn
    Drumetz, Lucas
    Tourneret, Jean-Yves
    Zare, Alina
    Jutten, Christian
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) : 223 - 270
  • [7] Fusion of Hyperspectral and Multispectral Images Using Spectral Unmixing and Sparse Coding
    Nezhad, Zahra Hashemi
    Karami, Azam
    Heylen, Rob
    Scheunders, Paul
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2377 - 2389
  • [8] Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information
    Tang, Wei
    Shi, Zhenwei
    Wu, Ying
    Zhang, Changshui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (02): : 770 - 783
  • [9] Requirements for anomaly detection in hyperspectral data using spectral unmixing
    Winter, EM
    CONFERENCE RECORD OF THE THIRTY-FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2000, : 174 - 176
  • [10] VARIATIONAL METHODS FOR SPECTRAL UNMIXING OF HYPERSPECTRAL IMAGES
    Eches, Olivier
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Snoussi, Hichem
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 957 - 960