The moduli space of points in quaternionic projective space

被引:0
|
作者
Cao, Wensheng [1 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Guangdong, Peoples R China
关键词
Quaternionic hyperbolic space; gram matrix; moduli space; CONGRUENCE CRITERIA; FINITE SUBSETS; CLASSIFICATION; INVARIANT; BOUNDARY;
D O I
10.32917/h2020068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M(n, m; FPn) be the configuration space of m-tuples of pairwise distinct points in FPn, that is, the quotient of the set of m-tuples of pairwise distinct points in FPn with respect to the diagonal action of PU(1, n; F) equipped with the quotient topology. In this paper, by mainly using the rotation-normalized and the block-normalized algorithms, we construct the parameter spaces of both M(n, m; qHnH) and M(n, m; P(V+)), respectively.
引用
收藏
页码:255 / 286
页数:32
相关论文
共 50 条
  • [31] A characterization of quaternionic projective space by the conformal-Killing equation
    David, Liana
    Pontecorvo, Massimiliano
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 326 - 340
  • [32] On the moduli space of Klein four covers of the projective line
    Glass, D
    Pries, R
    Computational Aspects of Algebraic Curves, 2005, 13 : 58 - 70
  • [33] Moduli space of principal sheaves over projective varieties
    Gómez, T
    Sols, I
    ANNALS OF MATHEMATICS, 2005, 161 (02) : 1037 - 1092
  • [34] Functions on the moduli space of projective structures on complex curves
    Biswas, Indranil
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 194
  • [35] Covers of the projective line and the moduli space of quadratic differentials
    Chen, Dawei
    GEOMETRIAE DEDICATA, 2013, 163 (01) : 105 - 125
  • [36] CONSTRUCTION OF MODULI SPACE OF SEMISTABLE SHEAVES ON A PROJECTIVE PLANE
    LEPOTIER, J
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (03): : 363 - 369
  • [37] Covers of the projective line and the moduli space of quadratic differentials
    Dawei Chen
    Geometriae Dedicata, 2013, 163 : 105 - 125
  • [38] COUNTING LATTICE POINTS IN THE MODULI SPACE OF CURVES
    Norbury, Paul
    MATHEMATICAL RESEARCH LETTERS, 2010, 17 (03) : 467 - 481
  • [39] Rational points in the moduli space of genus two
    Beshaj, L.
    Hidalgo, R.
    Kruk, S.
    Malmendier, A.
    Quispe, S.
    Shaska, T.
    HIGHER GENUS CURVES IN MATHEMATICAL PHYSICS AND ARITHMETIC GEOMETRY, 2018, 703 : 83 - 115
  • [40] THE EQUATIONS FOR THE MODULI SPACE OF n POINTS ON THE LINE
    Howard, Benjamin
    Millson, John
    Snowden, Andrew
    Vakil, Ravi
    DUKE MATHEMATICAL JOURNAL, 2009, 146 (02) : 175 - 226